ترغب بنشر مسار تعليمي؟ اضغط هنا

Siamese Generative Adversarial Privatizer for Biometric Data

152   0   0.0 ( 0 )
 نشر من قبل Witold Oleszkiewicz
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

State-of-the-art machine learning algorithms can be fooled by carefully crafted adversarial examples. As such, adversarial examples present a concrete problem in AI safety. In this work we turn the tables and ask the following question: can we harness the power of adversarial examples to prevent malicious adversaries from learning identifying information from data while allowing non-malicious entities to benefit from the utility of the same data? For instance, can we use adversarial examples to anonymize biometric dataset of faces while retaining usefulness of this data for other purposes, such as emotion recognition? To address this question, we propose a simple yet effective method, called Siamese Generative Adversarial Privatizer (SGAP), that exploits the properties of a Siamese neural network to find discriminative features that convey identifying information. When coupled with a generative model, our approach is able to correctly locate and disguise identifying information, while minimally reducing the utility of the privatized dataset. Extensive evaluation on a biometric dataset of fingerprints and cartoon faces confirms usefulness of our simple yet effective method.



قيم البحث

اقرأ أيضاً

Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limi ted data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.
Recently, the majority of visual trackers adopt Convolutional Neural Network (CNN) as their backbone to achieve high tracking accuracy. However, less attention has been paid to the potential adversarial threats brought by CNN, including Siamese netwo rk. In this paper, we first analyze the existing vulnerabilities in Siamese trackers and propose the requirements for a successful adversarial attack. On this basis, we formulate the adversarial generation problem and propose an end-to-end pipeline to generate a perturbed texture map for the 3D object that causes the trackers to fail. Finally, we conduct thorough experiments to verify the effectiveness of our algorithm. Experiment results show that adversarial examples generated by our algorithm can successfully lower the tracking accuracy of victim trackers and even make them drift off. To the best of our knowledge, this is the first work to generate 3D adversarial examples on visual trackers.
One of the biggest issues facing the use of machine learning in medical imaging is the lack of availability of large, labelled datasets. The annotation of medical images is not only expensive and time consuming but also highly dependent on the availa bility of expert observers. The limited amount of training data can inhibit the performance of supervised machine learning algorithms which often need very large quantities of data on which to train to avoid overfitting. So far, much effort has been directed at extracting as much information as possible from what data is available. Generative Adversarial Networks (GANs) offer a novel way to unlock additional information from a dataset by generating synthetic samples with the appearance of real images. This paper demonstrates the feasibility of introducing GAN derived synthetic data to the training datasets in two brain segmentation tasks, leading to improvements in Dice Similarity Coefficient (DSC) of between 1 and 5 percentage points under different conditions, with the strongest effects seen fewer than ten training image stacks are available.
We introduce the GANformer, a novel and efficient type of transformer, and explore it for the task of visual generative modeling. The network employs a bipartite structure that enables long-range interactions across the image, while maintaining compu tation of linear efficiency, that can readily scale to high-resolution synthesis. It iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation, and can thus be seen as a generalization of the successful StyleGAN network. We demonstrate the models strength and robustness through a careful evaluation over a range of datasets, from simulated multi-object environments to rich real-world indoor and outdoor scenes, showing it achieves state-of-the-art results in terms of image quality and diversity, while enjoying fast learning and better data-efficiency. Further qualitative and quantitative experiments offer us an insight into the models inner workings, revealing improved interpretability and stronger disentanglement, and illustrating the benefits and efficacy of our approach. An implementation of the model is available at https://github.com/dorarad/gansformer.
Class imbalance is a long-standing problem relevant to a number of real-world applications of deep learning. Oversampling techniques, which are effective for handling class imbalance in classical learning systems, can not be directly applied to end-t o-end deep learning systems. We propose a three-player adversarial game between a convex generator, a multi-class classifier network, and a real/fake discriminator to perform oversampling in deep learning systems. The convex generator generates new samples from the minority classes as convex combinations of existing instances, aiming to fool both the discriminator as well as the classifier into misclassifying the generated samples. Consequently, the artificial samples are generated at critical locations near the peripheries of the classes. This, in turn, adjusts the classifier induced boundaries in a way which is more likely to reduce misclassification from the minority classes. Extensive experiments on multiple class imbalanced image datasets establish the efficacy of our proposal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا