ﻻ يوجد ملخص باللغة العربية
New measurements of directed flow for charged hadrons, characterized by the Fourier coefficient vone, are presented for transverse momenta $mathrm{p_T}$, and centrality intervals in Au+Au collisions recorded by the STAR experiment for the center-of-mass energy range $mathrm{sqrt{s_{_{NN}}}} = 7.7 - 200$ GeV. The measurements underscore the importance of momentum conservation and the characteristic dependencies on $mathrm{sqrt{s_{_{NN}}}}$, centrality and $mathrm{p_T}$ are consistent with the expectations of geometric fluctuations generated in the initial stages of the collision, acting in concert with a hydrodynamic-like expansion. The centrality and $mathrm{p_T}$ dependencies of $mathrm{v^{even}_{1}}$, as well as an observed similarity between its excitation function and that for $mathrm{v_3}$, could serve as constraints for initial-state models. The $mathrm{v^{even}_{1}}$ excitation function could also provide an important supplement to the flow measurements employed for precision extraction of the temperature dependence of the specific shear viscosity.
We present a measurement of the first-order azimuthal anisotropy, $v_1(y)$, of deuterons from Au+Au collisions at $sqrt{s_{NN}}$ = 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV recorded with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC).
Rapidity-odd directed flow($v_1$) measurements for charged pions, protons and antiprotons near mid-rapidity ($y=0$) are reported in $sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au + Au collisions as recorded by the STAR detector at the
We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $sqrt{s_text{NN}} = $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be we
We study the collision energy dependence of (anti-)deuteron and (anti-)triton production in the most central Au+Au collisions at $sqrt{s_mathrm{NN}}=$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV, using the nucleon coalescence model. The needed phase-sp
An excitation function of proton rapidity distributions for different centralities is reported from AGS Experiment E917 for Au+Au collisions at 6, 8, and 10.8 GeV/nucleon. The rapidity distributions from peripheral collisions have a valley at midrapi