ﻻ يوجد ملخص باللغة العربية
In this article, we study microscopic properties of a two-dimensional eigenvalue ensemble near a conical singularity arising from insertion of a point charge in the bulk of the support of eigenvalues. In particular, we characterize all rotationally symmetric scaling limits (Mittag-Leffler fields) and obtain universality of them when the underlying potential is algebraic. Applications include a result on the asymptotic distribution of $log|p_n(zeta)|$ where $p_n$ is the characteristic polynomial of an $n$:th order random normal matrix.
In this paper we study the distribution of level crossings for the spectra of linear families A+lambda B, where A and B are square matrices independently chosen from some given Gaussian ensemble and lambda is a complex-valued parameter. We formulate
We continue to develop the method for creation and annihilation of contour singularities in the $barpartial$--spectral data for the two-dimensional Schrodinger equation at fixed energy. Our method is based on the Moutard-type transforms for generaliz
We demonstrate a method to solve a general class of random matrix ensembles numerically. The method is suitable for solving log-gas models with biorthogonal type two-body interactions and arbitrary potentials. We reproduce standard results for a vari
Standard approach to dynamical random matrix models relies on the description of trajectories of eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle(trajectories) and the Huygens principle (wavefronts), we fo
We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assu