ترغب بنشر مسار تعليمي؟ اضغط هنا

The random normal matrix model: insertion of a point charge

69   0   0.0 ( 0 )
 نشر من قبل Yacin Ameur
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we study microscopic properties of a two-dimensional eigenvalue ensemble near a conical singularity arising from insertion of a point charge in the bulk of the support of eigenvalues. In particular, we characterize all rotationally symmetric scaling limits (Mittag-Leffler fields) and obtain universality of them when the underlying potential is algebraic. Applications include a result on the asymptotic distribution of $log|p_n(zeta)|$ where $p_n$ is the characteristic polynomial of an $n$:th order random normal matrix.



قيم البحث

اقرأ أيضاً

In this paper we study the distribution of level crossings for the spectra of linear families A+lambda B, where A and B are square matrices independently chosen from some given Gaussian ensemble and lambda is a complex-valued parameter. We formulate a number of theoretical and numerical results for the classical Gaussian ensembles and some generalisations. Besides, we present intriguing numerical information about the distribution of monodromy in case of linear families for the classical Gaussian ensembles of 3 * 3 matrices.
97 - P.G. Grinevich 2019
We continue to develop the method for creation and annihilation of contour singularities in the $barpartial$--spectral data for the two-dimensional Schrodinger equation at fixed energy. Our method is based on the Moutard-type transforms for generaliz ed analytic functions. In this note we show that this approach successfully works for point potentials.
We demonstrate a method to solve a general class of random matrix ensembles numerically. The method is suitable for solving log-gas models with biorthogonal type two-body interactions and arbitrary potentials. We reproduce standard results for a vari ety of well-known ensembles and show some new results for the Muttalib-Borodin ensembles and recently introduced $gamma$-ensemble for which analytic results are not yet available.
Standard approach to dynamical random matrix models relies on the description of trajectories of eigenvalues. Using the analogy from optics, based on the duality between the Fermat principle(trajectories) and the Huygens principle (wavefronts), we fo rmulate the Hamilton-Jacobi dynamics for large random matrix models. The resulting equations describe a broad class of random matrix models in a unified way, including normal (Hermitian or unitary) as well as strictly non-normal dynamics. HJ formalism applied to Brownian bridge dynamics allows one for calculations of the asymptotics of the Harish-Chandra-Itzykson-Zuber integrals.
176 - F. Mezzadri , N. J. Simm 2011
We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assu mption that the Landauer-Butticker scattering matrix for chaotic ballistic cavities can be modelled by the circular ensembles of Random Matrix Theory (RMT). The starting points are the finite-n formulae that we recently discovered (Mezzadri and Simm, J. Math. Phys. 52 (2011), 103511). Our analysis includes all the symmetry classes beta=1,2,4; in addition, it applies to the transmission eigenvalues of Andreev billiards, whose symmetry classes were classified by Zirnbauer (J. Math. Phys. 37 (1996), 4986-5018) and Altland and Zirnbauer (Phys. Rev. B. 55 (1997), 1142-1161). Where applicable, our results are in complete agreement with the semiclassical theory of mesoscopic systems developed by Berkolaiko et al. (J. Phys. A.: Math. Theor. 41 (2008), 365102) and Berkolaiko and Kuipers (J. Phys. A: Math. Theor. 43 (2010), 035101 and New J. Phys. 13 (2011), 063020). Our approach also applies to the Selberg-like integrals. We calculate the first two terms in their asymptotic expansion explicitly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا