ﻻ يوجد ملخص باللغة العربية
Numerical mode matching (NMM) methods are widely used for analyzing wave propagation and scattering in structures that are piece-wise uniform along one spatial direction. For open structures that are unbounded in transverse directions (perpendicular to the uniform direction), the NMM methods use the perfectly matched layer (PML) technique to truncate the transverse variables. When incident waves are specified in homogeneous media surrounding the main structure, the total field is not always outgoing, and the NMM methods rely on reference solutions for each uniform segment. Existing NMM methods have difficulty handing gracing incident waves and special incident waves related to the onset of total internal reflection, and are not very efficient at computing reference solutions for non-plane incident waves. In this paper, a new NMM method is developed to overcome these limitations. A Robin-type boundary condition is proposed to ensure that non-propagating and non-decaying wave field components are not reflected by truncated PMLs. Exponential convergence of the PML solutions based on the hybrid Dirichlet-Robin boundary condition is established theoretically. A fast method is developed for computing reference solutions for cylindrical incident waves. The new NMM is implemented for two-dimensional structures and polarized electromagnetic waves. Numerical experiments are carried out to validate the new NMM method and to demonstrate its performance.
For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. F
This paper presents a numerical method to implement the parameter estimation method using response statistics that was recently formulated by the authors. The proposed approach formulates the parameter estimation problem of It^o drift diffusions as a
Numerical approximation of a general class of nonlinear unidirectional wave equations with a convolution-type nonlocality in space is considered. A semi-discrete numerical method based on both a uniform space discretization and the discrete convoluti
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value
This paper proposes a novel method to establish the wellposedness and convergence theory of the uniaxial-perfectly-matched-layer (UPML) method in solving a two-dimensional acoustic scattering problem due to a compactly supported source, where the med