ﻻ يوجد ملخص باللغة العربية
Ramanujan graphs have fascinating properties and history. In this paper we explore a parallel notion of Ramanujan digraphs, collecting relevant results from old and recent papers, and proving some new ones. Almost-normal Ramanujan digraphs are shown to be of special interest, as they are extreme in the sense of an Alon-Boppana theorem, and they have remarkable combinatorial features, such as small diameter, Chernoff bound for sampling, optimal covering time and sharp cutoff. Other topics explored are the connection to Cayley graphs and digraphs, the spectral radius of universal covers, Alons conjecture for random digraphs, and explicit constructions of almost-normal Ramanujan digraphs.
The cutoff phenomenon was recently confirmed for random walks on Ramanujan graphs by the first author and Peres. In this work, we obtain analogs in higher dimensions, for random walk operators on any Ramanujan complex associated with a simple group $
Let $X$ be an infinite graph of bounded degree; e.g., the Cayley graph of a free product of finite groups. If $G$ is a finite graph covered by $X$, it is said to be $X$-Ramanujan if its second-largest eigenvalue $lambda_2(G)$ is at most the spectral
Let $p(Y_1, dots, Y_d, Z_1, dots, Z_e)$ be a self-adjoint noncommutative polynomial, with coefficients from $mathbb{C}^{r times r}$, in the indeterminates $Y_1, dots, Y_d$ (considered to be self-adjoint), the indeterminates $Z_1, dots, Z_e$, and thei
The r-th power of a graph modifies a graph by connecting every vertex pair within distance r. This paper gives a generalization of the Alon-Boppana Theorem for the r-th power of graphs, including irregular graphs. This leads to a generalized notion o
We show that for every prime $d$ and $alphain (0,1/6)$, there is an infinite sequence of $(d+1)$-regular graphs $G=(V,E)$ with girth at least $2alpha log_{d}(|V|)(1-o_d(1))$, second adjacency matrix eigenvalue bounded by $(3/sqrt{2})sqrt{d}$, and man