ترغب بنشر مسار تعليمي؟ اضغط هنا

Converse bounds for quantum and private communication over Holevo-Werner channels

112   0   0.0 ( 0 )
 نشر من قبل Stefano Pirandola
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Werner states have a host of interesting properties, which often serve to illuminate the unusual properties of quantum information. Starting from these states, one may define a family of quantum channels, known as the Holevo-Werner channels, which themselves afford several unusual properties. In this paper we use the teleportation covariance of these channels to upper bound their two-way assisted quantum and secret-key capacities. This bound may be expressed in terms of relative entropy distances, such as the relative entropy of entanglement, and also in terms of the squashed entanglement. Most interestingly, we show that the relative entropy bounds are strictly sub-additive for a sub-class of the Holevo-Werner channels, so that their regularisation provides a tighter performance. These information-theoretic results are first found for point-to-point communication and then extended to repeater chains and quantum networks, under different types of routing strategies.

قيم البحث

اقرأ أيضاً

We derive upper bounds on the rate of transmission of classical information over quantum channels by block codes with a given blocklength and error probability, for both entanglement-assisted and unassisted codes, in terms of a unifying framework of quantum hypothesis testing with restricted measurements. Our bounds do not depend on any special property of the channel (such as memorylessness) and generalise both a classical converse of Polyanskiy, Poor, and Verd{u} as well as a quantum converse of Renner and Wang, and have a number of desirable properties. In particular our bound on entanglement-assisted codes is a semidefinite program and for memoryless channels its large blocklength limit is the well known formula for entanglement-assisted capacity due to Bennett, Shor, Smolin and Thapliyal.
We realize Landau-Streater (LS) and Werner-Holevo (WH) quantum channels for qutrits on the IBM quantum computers. These channels correspond to interaction between the qutrit and its environment that result in the globally unitarily covariant qutrit t ransformation violating multiplicativity of the maximal $p$-norm. Our realization of LS and WH channels is based on embedding qutrit states into states of two qubits and using single-qubit and two-qubit CNOT gates to implement the specific interaction. We employ the standard quantum gates hence the developed algorithm suits any quantum computer. We run our algorithm on a 5-qubit and a 20-qubit computer as well as on a simulator. We quantify the quality of the implemented channels comparing their action on different input states with theoretical predictions. The overall efficiency is quantified by fidelity between the theoretical and experimental Choi states implemented on the 20-qubit computer.
122 - Min-Hsiu Hsieh , Zhicheng Luo , 2008
We prove a regularized formula for the secret key-assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity cite{DHW 05RI}. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes private classical communication it{without} secret key assistance as a child protocol.
102 - Vikesh Siddhu , Arvind 2014
Quantum Private Comparison (QPC) allows us to protect private information during its comparison. In the past various three-party quantum protocols have been proposed that claim to work well under noisy conditions. Here we tackle the problem of QPC un der noise. We analyze the EPR-based protocol under depolarizing noise, bit flip and phase flip noise. We show how noise affects the robustness of the EPR-based protocol. We then present a straightforward protocol based on CSS codes to perform QPC which is robust against noise and secure under general attacks.
81 - Scott M. Cohen 2019
Given a protocol ${cal P}$ that implements multipartite quantum channel ${cal E}$ by repeated rounds of local operations and classical communication (LOCC), we construct an alternate LOCC protocol for ${cal E}$ in no more rounds than ${cal P}$ and no more than a fixed, constant number of outcomes for each local measurement, the same constant number for every party and every round. We then obtain another upper bound on the number of outcomes that, under certain conditions, improves on the first. The latter bound shows that for LOCC channels that are extreme points of the convex set of all quantum channels, the parties can restrict the number of outcomes in their individual local measurements to no more than the square of their local Hilbert space dimension, $d_alpha$, suggesting a possible link between the required resources for LOCC and the convex structure of the set of all quantum channels. Our bounds on the number of outcomes indicating the need for only constant resources per round, independent of the number of rounds $r$ including when that number is infinite, are a stark contrast to the exponential $r$-dependence in the only previously published bound of which we are aware. If a lower bound is known on the number of product operators needed to represent the channel, we obtain a lower bound on the number of rounds required to implement the given channel by LOCC. Finally, we show that when the quantum channel is not required but only that a given task be implemented deterministically, then no more than $d_alpha^2$ outcomes are needed for each local measurement by party $alpha$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا