ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling flows in the solar transition region

71   0   0.0 ( 0 )
 نشر من قبل Pia Zacharias
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The measured average velocities in solar and stellar spectral lines formed at transition region temperatures have been difficult to interpret. However, realistic three-dimensional radiation magnetohydrodynamics (3D rMHD) models of the solar atmosphere are able to reproduce the observed dominant line shifts and may thus hold the key to resolve these issues. Our new 3D rMHD simulations aim to shed light on how mass flows between the chromosphere and corona and on how the coronal mass is maintained. Passive tracer particles, so-called corks, allow the tracking of parcels of plasma over time and thus the study of changes in plasma temperature and velocity not only locally, but also in a co-moving frame. By following the trajectories of the corks, we can investigate mass and energy flows and understand the composition of the observed velocities. Our findings show that most of the transition region mass is cooling. The preponderance of transition region redshifts in the model can be explained by the higher percentage of downflowing mass in the lower and middle transition region. The average upflows in the upper transition region can be explained by a combination of both stronger upflows than downflows and a higher percentage of upflowing mass. The most common combination at lower and middle transition region temperatures are corks that are cooling and traveling downward. For these corks, a strong correlation between the pressure gradient along the magnetic field line and the velocity along the magnetic field line has been observed, indicating a formation mechanism that is related to downward propagating pressure disturbances. Corks at upper transition region temperatures are subject to a rather slow and highly variable but continuous heating process.

قيم البحث

اقرأ أيضاً

Suprathermal tails are a common feature of solar wind electron velocity distributions, and are expected in the solar corona. From the corona, suprathermal electrons can propagate through the steep temperature gradient of the transition region towards the chromosphere, and lead to non-Maxwellian electron velocity distribution functions (VDFs) with pronounced suprathermal tails. We calculate the evolution of a coronal electron distribution through the transition region in order to quantify the suprathermal electron population there. A kinetic model for electrons is used which is based on solving the Boltzmann-Vlasov equation for electrons including Coulomb collisions with both ions and electrons. Initial and chromospheric boundary conditions are Maxwellian VDFs with densities and temperatures based on a background fluid model. The coronal boundary condition has been adopted from earlier studies of suprathermal electron formation in coronal loops. The model results show the presence of strong suprathermal tails in transition region electron VDFs, starting at energies of a few 10 eV. Above electron energies of 600 eV, electrons can traverse the transition region essentially collision-free. The presence of strong suprathermal tails in transition region electron VDFs shows that the assumption of local thermodynamic equilibrium is not justified there. This has a significant impact on ionization dynamics, as is shown in a companion paper.
There are relatively few observations of UV emission during the impulsive phases of solar flares, so the nature of that emission is poorly known. Photons produced by solar flares can resonantly scatter off atoms and ions in the corona. Based on off-l imb measurements by SOHO/UVCS, we derive the O VI $lambda$1032 luminosities for 29 flares during the impulsive phase and the Ly$alpha$ luminosities of 5 flares, and we compare them with X-ray luminosities from GOES measurements. The upper transition region and lower transition region luminosities of the events observed are comparable. They are also comparable to the luminosity of the X-ray emitting gas at the beginning of the flare, but after 10-15 minutes the X-ray luminosity usually dominates. In some cases we can use Doppler dimming to estimate flow speeds of the O VI emitting gas, and 5 events show speeds in the 40 to 80 $rm km s^{-1}$ range. The O VI emission could originate in gas evaporating to fill the X-ray flare loops, in heated chromospheric gas at the footpoints, or in heated prominence material in the coronal mass ejection. All three sources may contribute in different events or even in a single event, and the relative timing of UV and X-ray brightness peaks, the flow speeds, and the total O VI luminosity favor each source in one or more events.
We review the presence and signatures of the non-equilibrium processes, both non-Maxwellian distributions and non-equilibrium ionization, in the solar transition region, corona, solar wind, and flares. Basic properties of the non-Maxwellian distribut ions are described together with their influence on the heat flux as well as on the rates of individual collisional processes and the resulting optically thin synthetic spectra. Constraints on the presence of high-energy electrons from observations are reviewed, including positive detection of non-Maxwellian distributions in the solar corona, transition region, flares, and wind. Occurrence of non-equilibrium ionization is reviewed as well, especially in connection to hydrodynamic and generalized collisional-radiative modelling. Predicted spectroscopic signatures of non-equilibrium ionization depending on the assumed plasma conditions are summarized. Finally, we discuss the future remote-sensing instrumentation that can be used for detection of these non-equilibrium phenomena in various spectral ranges.
The solar chromosphere and transition region (TR) form an interface between the Suns surface and its hot outer atmosphere. Here most of the non-thermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arcsec) observations with NASAs Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arcsecond scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-m Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere.
Magnetic reconnection is a fundamental plasma process that plays a critical role not only in energy release in the solar atmosphere, but also in fusion, astrophysical, and other space plasma environments. One of the challenges in explaining solar obs ervations in which reconnection is thought to play a critical role is to account for the transition of the dynamics from a slow quasi-continuous phase to a fast and impulsive energetic burst of much shorter duration. Despite the theoretical progress in identifying mechanisms that might lead to rapid onset, a lack of observations of this transition has left models poorly constrained. High-resolution spectroscopic observations from NASAs Interface Region Imaging Spectrograph (IRIS) now reveal tell-tale signatures of the abrupt transition of reconnection from a slow phase to a fast, impulsive phase during UV bursts or explosive events in the Suns atmosphere. Our observations are consistent with numerical simulations of the plasmoid instability, and provide evidence for the onset of fast reconnection mediated by plasmoids and new opportunities for remote-sensing diagnostics of reconnection mechanisms on the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا