ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional bosonization of a Dirac field in 2+1 dimensions, in the presence of a boundary

67   0   0.0 ( 0 )
 نشر من قبل Cesar Fosco
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the functional bosonization procedure to a massive Dirac field defined on a 2+1 dimensional spacetime which has a non-trivial boundary. We find the form of the bosonized current both for the bulk and boundary modes, showing that the gauge field in the bosonized theory contains a perfect-conductor boundary condition on the worldsheet spanned by the boundary. We find the bononized action for the corresponding boundary modes.

قيم البحث

اقرأ أيضاً

We study the Dynamical Casimir Effect (DCE) due to an Abelian gauge field in 2+1 dimensions, in the presence of semitransparent, zero-width mirrors, which may move or deform in a time-dependent way. We obtain general expressions for the probability o f motion-induced pair creation, which we render in a more explicit form, for some relevant states of motion.
Within the context of a bosonized theory, we evaluate the current-current correlation functions corresponding to a massive Dirac field in 2+1 dimensions, which is constrained to a spatial half-plane. We apply the result to the evaluation of induced v acuum currents in the presence of an external field. We comment on the relation with the purely fermionic version of the model, in the large-mass limit.
Motivated by the conduction properties of graphene discovered and studied in the last decades, we consider the quantum dynamics of a massless, charged, spin 1/2 relativistic particle in three dimensional space-time, in the presence of an electrostati c field in various configurations such as step or barrier potentials and generalizations of them. The field is taken as parallel to the y coordinate axis and vanishing outside of a band parallel to the x axis. The classical theory is reviewed, together with its canonical quantization leading to the Dirac equation for a 2-component spinor. Stationary solutions are numerically found for each of the field configurations considered, fromwhich we calculate the mean quantum trajectories of the particle and compare them with the corresponding classical trajectories, the latter showing a classical version of the Klein phenomenon. Transmission and reflection probabilities are also calculated, confirming the Klein phenomenon.
In the last few years it was realized that every fermionic theory in 1+1 dimensions is a generalized Jordan-Wigner transform of a bosonic theory with a non-anomalous $mathbb{Z}_2$ symmetry. In this note we determine how the boundary states are mapped under this correspondence. We also interpret this mapping as the fusion of the original boundary with the fermionization interface.
We consider the effects of an external magnetic field on rotating fermions in 1+2,3 dimensions. The dual effect of a rotation parallel to the magnetic field causes a net increase in the fermionic density by centrifugation, which follows from the sink ing of the particle lowest Landau level in the Dirac sea for free Dirac fermions. In 1+d = 2n dimensions, this effect is related to the chiral magnetic effect in 2n-2 dimensions. This phenomenon is discussed specifically for both weak and strong inter-fermion interactions in 1+2 dimensions. For QCD in 1+3 dimensions with Dirac quarks, we show that in the strongly coupled phase with spontaneously broken chiral symmetry, this mechanism reveals itself in the form of an induced pion condensation by centrifugation. We use this observation to show that this effect causes a shift in the chiral condensate in leading order, and to discuss the possibility for the formation of a novel pion super-fluid phase in present heavy ion collisions at collider energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا