ترغب بنشر مسار تعليمي؟ اضغط هنا

Traveling waves for the quartic focusing Half Wave equation in one space dimension

143   0   0.0 ( 0 )
 نشر من قبل Jacopo Bellazzini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the quartic focusing Half Wave equation (HW) in one space dimension. We show first that that there exist traveling wave solutions with arbitrary small $H^{frac 12}(R)$ norm. This fact shows that small data scattering is not possible for (HW) equation and that below the ground state energy there are solutions whose energy travels as a localised packet and which preserve this localisation in time. This behaviour for (HW) is in sharp contrast with classical NLS in any dimension and with fractional NLS with radial data. The second result addressed is the non existence of traveling waves moving at the speed of light. The main ingredients of the proof are commutator estimates and a careful study of spatial decay of traveling waves profile using the harmonic extension to the upper half space.



قيم البحث

اقرأ أيضاً

The direct method based on the definition of conserved currents of a system of differential equations is applied to compute the space of conservation laws of the (1+1)-dimensional wave equation in the light-cone coordinates. Then Noethers theorem yie lds the space of variational symmetries of the corresponding functional. The results are also presented for the standard space-time form of the wave equation.
We consider nonlinear half-wave equations with focusing power-type nonlinearity $$ i pt_t u = sqrt{-Delta} , u - |u|^{p-1} u, quad mbox{with $(t,x) in R times R^d$} $$ with exponents $1 < p < infty$ for $d=1$ and $1 < p < (d+1)/(d-1)$ for $d geq 2$. We study traveling solitary waves of the form $$ u(t,x) = e^{iomega t} Q_v(x-vt) $$ with frequency $omega in R$, velocity $v in R^d$, and some finite-energy profile $Q_v in H^{1/2}(R^d)$, $Q_v ot equiv 0$. We prove that traveling solitary waves for speeds $|v| geq 1$ do not exist. Furthermore, we generalize the non-existence result to the square root Klein--Gordon operator $sqrt{-DD+m^2}$ and other nonlinearities. As a second main result, we show that small data scattering fails to hold for the focusing half-wave equation in any space dimension. The proof is based on the existence and properties of traveling solitary waves for speeds $|v| < 1$. Finally, we discuss the energy-critical case when $p=(d+1)/(d-1)$ in dimensions $d geq 2$.
In this paper we study the existence of finite energy traveling waves for the Gross-Pitaevskii equation. This problem has deserved a lot of attention in the literature, but the existence of solutions in the whole subsonic range was a standing open pr oblem till the work of Maris in 2013. However, such result is valid only in dimension 3 and higher. In this paper we first prove the existence of finite energy traveling waves for almost every value of the speed in the subsonic range. Our argument works identically well in dimensions 2 and 3. With this result in hand, a compactness argument could fill the range of admissible speeds. We are able to do so in dimension 3, recovering the aforementioned result by Maris. The planar case turns out to be more difficult and the compactness argument works only under an additional assumption on the vortex set of the approximating solutions.
We consider the half-wave maps equation $$ partial_t vec{S} = vec{S} wedge | abla| vec{S}, $$ where $vec{S}= vec{S}(t,x)$ takes values on the two-dimensional unit sphere $mathbb{S}^2$ and $x in mathbb{R}$ (real line case) or $x in mathbb{T}$ (periodi c case). This an energy-critical Hamiltonian evolution equation recently introduced in cite{LS,Zh}, which formally arises as an effective evolution equation in the classical and continuum limit of Haldane-Shastry quantum spin chains. We prove that the half-wave maps equation admits a Lax pair and we discuss some analytic consequences of this finding. As a variant of our arguments, we also obtain a Lax pair for the half-wave maps equation with target $mathbb{H}^2$ (hyperbolic plane).
We study traveling wave solutions of the nonlinear variational wave equation. In particular, we show how to obtain global, bounded, weak traveling wave solutions from local, classical ones. The resulting waves consist of monotone and constant segment s, glued together at points where at least one one-sided derivative is unbounded. Applying the method of proof to the Camassa--Holm equation, we recover some well-known results on its traveling wave solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا