ترغب بنشر مسار تعليمي؟ اضغط هنا

Confinement- and strain-induced enhancement of thermoelectric properties in LaNiO$_3$/LaAlO$_3(001)$ superlattices

196   0   0.0 ( 0 )
 نشر من قبل Benjamin Geisler
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining ab initio simulations including an on-site Coulomb repulsion term and Boltzmann theory, we explore the thermoelectric properties of (LaNiO$_3$)$_n$/(LaAlO$_3$)$_n$(001) superlattices ($n=1,3$) and identify a strong dependence on confinement, spacer thickness, and epitaxial strain. While the system with $n=3$ shows modest values of the Seebeck coefficient and power factor, the simultaneous reduction of the LaNiO$_3$ region and the LaAlO$_3$ spacer thickness to single layers results in a strong enhancement, in particular of the in-plane values. This effect can be further tuned by using epitaxial strain as control parameter: Under tensile strain corresponding to the lateral lattice constant of SrTiO$_3$ we predict in- and cross-plane Seebeck coefficients of $pm 600$ $mu$V/K and an in-plane power factor of $11$ $mu$W/K$^2$cm for an estimated relaxation time of $tau = 4$ fs around room temperature. These values are comparable to some of the best performing oxide systems such as La-doped SrTiO$_3$ or layered cobaltates and are associated with the opening of a small gap ($0.29$ eV) induced by the concomitant effect of octahedral tilting and Ni-site disproportionation. This establishes oxide superlattices at the verge of a metal-to-insulator transition driven by confinement and strain as promising candidates for thermoelectric materials.



قيم البحث

اقرأ أيضاً

120 - Shuai Dong , Elbio Dagotto 2013
The emergence of magnetic reconstructions at the interfaces of oxide heterostructures are often explained via subtle modifications in the electronic densities, exchange couplings, or strain. Here an additional possible route for induced magnetism is studied in the context of the (LaNiO$_3$)$_n$/(LaMnO$_3$)$_n$ superlattices using a hybrid tight-binding model. In the LaNiO$_3$ region, the induced magnetizations decouple from the intensity of charge leakage from Mn to Ni, but originate from the spin-filtered quantum confinement present in these nanostructures. In general, the induced magnetization is the largest for the (111)-stacking and the weakest for the (001)-stacking superlattices, results compatible with the exchange bias effects reported by Gibert et al. Nat. Mater. 11, 195 (2012).
500 - S. Middey , D. Meyers , M. Kareev 2012
The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize the polarity. We report o n the synthesis of high quality LaNiO$_3$/mLaAlO$_3$ pseudo cubic (111) superlattices on polar (111)-oriented LaAlO$_3$, the proposed complex oxide candidate for a topological insulating behavior. Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates.
Motivated by recent experiments, we use the $+U$ extension of the generalized gradient approximation to density functional theory to study superlattices composed of alternating layers of LaNiO$_3$ and LaMnO$_3$. For comparison we also study a rocksal t ((111) double perovskite) structure and bulk LaNiO$_3$ and LaMnO$_3$. A Wannier function analysis indicates that band parameters are transferable from bulk to superlattice situations with the exception of the transition metal d-level energy, which has a contribution from the change in d-shell occupancy. The charge transfer from Mn to Ni is found to be moderate in the superlattice, indicating metallic behavior, in contrast to the insulating behavior found in recent experiments, while the rocksalt structure is found to be insulating with a large Mn-Ni charge transfer. We suggest a high density of cation antisite defects may account for the insulating behavior experimentally observed in short-period superlattices.
149 - A. F^ete , C. Cancellieri , D. Li 2015
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
Oxygen octahedral rotations have been measured in short-period (LaNiO$_3$)$_n$/(SrMnO$_3$)$_m$ superlattices using synchrotron diffraction. The in-plane and out-of-plane bond angles and lengths are found to systematically vary with superlattice compo sition. Rotations are suppressed in structures with $m>n$, producing a nearly cubic form of LaNiO$_3$. Large rotations are present in structures with $m<n$, leading to reduced bond angles in SrMnO$_3$. The metal-oxygen-metal bond lengths decrease as rotations are reduced, in contrast to behavior previously observed in strained, single layer films. This result demonstrates that superlattice structures can be used to stabilize non-equilibrium octahedral behavior in a manner distinct from epitaxial strain, providing a novel means to engineer the electronic and ferroic properties of oxide heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا