ترغب بنشر مسار تعليمي؟ اضغط هنا

Weighted (Co)homology and Weighted Laplacian

79   0   0.0 ( 0 )
 نشر من قبل Chengyuan Wu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we generalize the combinatorial Laplace operator of Horak and Jost by introducing the $phi$-weighted coboundary operator induced by a weight function $phi$. Our weight function $phi$ is a generalization of Dawsons weighted boundary map. We show that our above-mentioned generalizations include new cases that are not covered by previous literature. Our definition of weighted Laplacian for weighted simplicial complexes is also applicable to weighted/unweighted graphs and digraphs.



قيم البحث

اقرأ أيضاً

308 - Shiquan Ren , Chengyuan Wu , 2017
In this paper, we study further properties and applications of weighted homology and persistent homology. We introduce the Mayer-Vietoris sequence and generalized Bockstein spectral sequence for weighted homology. For applications, we show an algorit hm to construct a filtration of weighted simplicial complexes from a weighted network. We also prove a theorem that allows us to calculate the mod $p^2$ weighted persistent homology given some information on the mod $p$ weighted persistent homology.
In this paper, we develop a novel weighted Laplacian method, which is partially inspired by the theory of graph Laplacian, to study recent popular graph problems, such as multilevel graph partitioning and balanced minimum cut problem, in a more conve nient manner. Since the weighted Laplacian strategy inherits the virtues of spectral methods, graph algorithms designed using weighted Laplacian will necessarily possess more robust theoretical guarantees for algorithmic performances, comparing with those existing algorithms that are heuristically proposed. In order to illustrate its powerful utility both in theory and in practice, we also present two effective applications of our weighted Laplacian method to multilevel graph partitioning and balanced minimum cut problem, respectively. By means of variational methods and theory of partial differential equations (PDEs), we have established the equivalence relations among the weighted cut problem, balanced minimum cut problem and the initial clustering problem that arises in the middle stage of graph partitioning algorithms under a multilevel structure. These equivalence relations can indeed provide solid theoretical support for algorithms based on our proposed weighted Laplacian strategy. Moreover, from the perspective of the application to the balanced minimum cut problem, weighted Laplacian can make it possible for research of numerical solutions of PDEs to be a powerful tool for the algorithmic study of graph problems. Experimental results also indicate that the algorithm embedded with our strategy indeed outperforms other existing graph algorithms, especially in terms of accuracy, thus verifying the efficacy of the proposed weighted Laplacian.
In this paper, we develop and study the theory of weighted fundamental groups of weighted simplicial complexes. When all weights are 1, the weighted fundamental group reduces to the usual fundamental group as a special case. We also study weight
In this article we develop the cotangent complex and (co)homology theories for spectral categories. Along the way, we reproduce standard model structures on spectral categories. As applications, we show that the invariants to descend to stable $infty $-categories and we prove a stabilization result for spectral categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا