ﻻ يوجد ملخص باللغة العربية
The conventional k.p method fails to capture the full and essential physics of many symmetry enriched multiple nodal line structures in the three dimensional Brillouin zone. Here we present a new and systematical method to construct the effective lattice model of mirror symmetry protected three-dimensional multiple nodal line semimetals, when the spin-orbit interaction is ignored. For systems with a given pair of perpendicular nodal rings, we obtain all the effective lattice models and eleven inequivalent nodal line Fermi surfaces together with their related constraints. By means of first-principles calculations, we first propose a family of real materials, beta phase of ternary nitrides X2GeN2 (X = Ca; Sr; Ba), that support one kind of these novel Fermi surfaces. Therefore, our work deepens the understanding of the nodal line structures and promotes the experimental progress of topological nodal line semimetals.
Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystal
Spin-gapless semimetals (SGSMs), which generate 100% spin polarization, are viewed as promising semi-half-metals in spintronics with high speed and low consumption. We propose and characterize a new $mathbb{Z_{mathrm{2}}}$ class of topological nodal
This year, Liu textit{et al}. [Phys. Rev. B textbf{104}, L041405 (2021)] proposed a new class of topological phonons (TPs; i.e., one-nodal surface (NS) phonons), which provides an effective route for realizing one-NSs in phonon systems. In this work,
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensiona