ترغب بنشر مسار تعليمي؟ اضغط هنا

Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor

118   0   0.0 ( 0 )
 نشر من قبل Tongcang Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Levitated optomechanics has great potentials in precision measurements, thermodynamics, macroscopic quantum mechanics and quantum sensing. Here we synthesize and optically levitate silica nanodumbbells in high vacuum. With a linearly polarized laser, we observe the torsional vibration of an optically levitated nanodumbbell in vacuum. The linearly-polarized optical tweezer provides a restoring torque to confine the orientation of the nanodumbbell, in analog to the torsion wire which provides restoring torque for suspended lead spheres in the Cavendish torsion balance. Our calculation shows its torque detection sensitivity can exceed that of the current state-of-the-art torsion balance by several orders. The levitated nanodumbbell torsion balance provides rare opportunities to observe the Casimir torque and probe the quantum nature of gravity as proposed recently. With a circularly-polarized laser, we drive a 170-nm-diameter nanodumbbell to rotate beyond 1~GHz, which is the fastest nanomechanical rotor realized to date. Our calculations show that smaller silica nanodumbbells can sustain rotation frequency beyond 10 GHz. Such ultrafast rotation may be used to study material properties and probe vacuum friction.

قيم البحث

اقرأ أيضاً

Torque sensors such as the torsion balance enabled the first determination of the gravitational constant by Cavendish and the discovery of Coulombs law. Torque sensors are also widely used in studying small-scale magnetism, the Casimir effect, and ot her applications. Great effort has been made to improve the torque detection sensitivity by nanofabrication and cryogenic cooling. The most sensitive nanofabricated torque sensor has achieved a remarkable sensitivity of $10^{-24} rm{Nm}/sqrt{rm{Hz}}$ at millikelvin temperatures in a dilution refrigerator. Here we dramatically improve the torque detection sensitivity by developing an ultrasensitive torque sensor with an optically levitated nanorotor in vacuum. We measure a torque as small as $(1.2 pm 0.5) times 10^{-27} rm{Nm}$ in 100 seconds at room temperature. Our system does not require complex nanofabrication or cryogenic cooling. Moreover, we drive a nanoparticle to rotate at a record high speed beyond 5 GHz (300 billion rpm). Our calculations show that this system will be able to detect the long-sought vacuum friction near a surface under realistic conditions. The optically levitated nanorotor will also have applications in studying nanoscale magnetism and quantum geometric phase.
Optically levitated nonspherical particles in vacuum are excellent candidates for torque sensing, rotational quantum mechanics, high-frequency gravitational wave detection, and multiple other applications. Many potential applications, such as detecti ng the Casimir torque near a birefringent surface, require simultaneous cooling of both the center-of-mass motion and the torsional vibration (or rotation) of a nonspherical nanoparticle. Here we report the first 5D cooling of a levitated nanoparticle. We cool the 3 center-of-mass motion modes and 2 torsional vibration modes of a levitated nanodumbbell in a linearly-polarized laser simultaneously. The only uncooled rigid-body degree of freedom is the rotation of the nanodumbbell around its long axis. This free rotation mode does not couple to the optical tweezers directly. Surprisingly, we observe that it strongly affects the torsional vibrations of the nanodumbbell. This work deepens our understanding of the nonlinear dynamics and rotation coupling of a levitated nanoparticle and paves the way towards full quantum control of its motion.
According to quantum theory, measurement and backaction are inextricably linked. In optical position measurements, this backaction is known as radiation pressure shot noise. In analogy, a measurement of the orientation of a mechanical rotor must dist urb its angular momentum by radiation torque shot noise. In this work, we observe the shot-noise torque fluctuations arising in a measurement of the angular orientation of an optically levitated nanodumbbell. We feedback cool the dumbbells rotational motion and investigate its reheating behavior when released from feedback. In high vacuum, the heating rate due to radiation torque shot noise dominates over the thermal and technical heating rates in the system.
Optomechanical systems are suitable for elucidating quantum phenomena at the macroscopic scale in the sense of the mass scale. The systems should be well-isolated from the environment to avoid classical noises, which conceal quantum signals. Optical levitation is a promising way to isolate optomechanical systems from the environment. To realize optical levitation, all degrees of freedom need to be trapped. Until now, longitudinal trapping and rotational trapping of a mirror with optical radiation pressure have been studied in detail and validated with various experiments. However, less attention has been paid to the transversal trapping of a mirror. Herein, we report a pioneering result where we experimentally confirmed transversal trapping of a mirror of a Fabry-Perot cavity using a torsional pendulum. Through this demonstration, we experimentally proved that optical levitation is realizable with only two Fabry-Perot cavities that are aligned vertically. This work paves the way toward optical levitation and realizing a macroscopic quantum system.
123 - Wenchao Ge , Brandon Rodenburg , 2016
Optically levitated nanoparticles have recently emerged as versatile platforms for investigating macroscopic quantum mechanics and enabling ultrasensitive metrology. In this article we theoretically consider two damping regimes of an optically levita ted nanoparticle cooled by cavityless parametric feedback. Our treatment is based on a generalized Fokker-Planck equation derived from the quantum master equation presented recently and shown to agree very well with experiment [1]. For low damping, we find that the resulting Wigner function yields the single-peaked oscillator position distribution and recovers the appropriate energy distribution derived earlier using a classical theory and verified experimentally [2]. For high damping, in contrast, we predict a double-peaked position distribution, which we trace to an underlying bistability induced by feedback. Unlike in cavity-based optomechanics, stochastic processes play a major role in determining the bistable behavior. To support our conclusions, we present analytical expressions as well as numerical simulations using the truncated Wigner function approach. Our work opens up the prospect of developing bistability-based devices, characterization of phase-space dynamics, and investigation of the quantum-classical transition using levitated nanoparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا