ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Scaling Relations for Disk Galaxies in the Local Universe

229   0   0.0 ( 0 )
 نشر من قبل Andrea Lapi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Lapi




اسأل ChatGPT حول البحث

We build templates of rotation curves as a function of the $I-$band luminosity via the mass modeling (by the sum of a thin exponential disk and a cored halo profile) of suitably normalized, stacked data from wide samples of local spiral galaxies. We then exploit such templates to determine fundamental stellar and halo properties for a sample of about $550$ local disk-dominated galaxies with high-quality measurements of the optical radius $R_{rm opt}$ and of the corresponding rotation velocity $V_{rm opt}$. Specifically, we determine the stellar $M_star$ and halo $M_{rm H}$ masses, the halo size $R_{rm H}$ and velocity scale ${V_{rm H}}$, and the specific angular momenta of the stellar $j_star$ and dark matter $j_{rm H}$ components. We derive global scaling relationships involving such stellar and halo properties both for the individual galaxies in our sample and for their mean within bins; the latter are found to be in pleasing agreement with previous determinations by independent methods (e.g., abundance matching techniques, weak lensing observations, and individual rotation curve modeling). Remarkably, the size of our sample and the robustness of our statistical approach allow us to attain an unprecedented level of precision over an extended range of mass and velocity scales, with $1sigma$ dispersion around the mean relationships of less than $0.1$ dex. We thus set new standard local relationships that must be reproduced by detailed physical models, that offer a basis for improving the sub-grid recipes in numerical simulations, that provide a benchmark to gauge independent observations and check for systematics, and that constitute a basic step toward the future exploitation of the spiral galaxy population as a cosmological probe.



قيم البحث

اقرأ أيضاً

The purpose of this work is the characterization of the main scaling relations between all the ISM components (dust, atomic/molecular/total gas), gas-phase metallicity, and other galaxy properties, such as Mstar and galaxy morphology, for late-type g alaxies in the Local Universe. This study is performed by extracting late-type galaxies from the entire DustPedia sample and by exploiting the large and homogeneous dataset available thanks to the DustPedia project. The sample consists of 436 galaxies with morphological stage from T = 1 to 10, Mstar from 6 x 10^7 to 3 x 10^11 Msun, SFR from 6 x 10^(-4) to 60 Msun/yr, and 12 + log(O/H) from 8 to 9.5. The scaling relations involving the molecular gas are studied by assuming both a constant and a metallicity-dependent XCO. The analysis has been performed by means of the survival analysis technique. We confirm that the dust mass correlates very well with the total gas mass, and find -- for the first time -- that the dust mass correlates better with the atomic gas mass than the molecular one. We characterize important mass ratios such as gas fraction, molecular-to-atomic gas mass ratio, dust-to-total gas mass ratio (DGR), and dust-to-stellar mass ratio. Only the assumption of a metallicity-dependent XCO reproduces the expected decrease of the DGR with increasing morphological stage and decreasing gas-phase metallicity, with a slope of about 1. DGR, gas-phase metallicity, and the dust-to-stellar mass ratio are, for our galaxy sample, directly linked to the galaxy morphology. The molecular-to-atomic gas mass ratio and the DGR show a positive correlation for low molecular gas fractions, but for molecular gas rich galaxies this trend breaks down. This trend has never been found previously, to our knowledge. It provides new constraints for theoretical models of galaxy evolution and a reference for high-redshift studies.
We present the extended GALEX Arecibo SDSS Survey (xGASS), a gas fraction-limited census of the atomic (HI) gas content of 1179 galaxies selected only by stellar mass ($M_star =10^{9}-10^{11.5} M_odot$) and redshift ($0.01<z<0.05$). This includes new Arecibo observations of 208 galaxies, for which we release catalogs and HI spectra. In addition to extending the GASS HI scaling relations by one decade in stellar mass, we quantify total (atomic+molecular) cold gas fractions and molecular-to-atomic gas mass ratios, $R_{mol}$, for the subset of 477 galaxies observed with the IRAM 30 m telescope. We find that atomic gas fractions keep increasing with decreasing stellar mass, with no sign of a plateau down to $log M_star/M_odot = 9$. Total gas reservoirs remain HI-dominated across our full stellar mass range, hence total gas fraction scaling relations closely resemble atomic ones, but with a scatter that strongly correlates with $R_{mol}$, especially at fixed specific star formation rate. On average, $R_{mol}$ weakly increases with stellar mass and stellar surface density $mu_star$, but individual values vary by almost two orders of magnitude at fixed $M_star$ or $mu_star$. We show that, for galaxies on the star-forming sequence, variations of $R_{mol}$ are mostly driven by changes of the HI reservoirs, with a clear dependence on $mu_star$. Establishing if galaxy mass or structure plays the most important role in regulating the cold gas content of galaxies requires an accurate separation of bulge and disk components for the study of gas scaling relations.
145 - Kambiz Fathi 2011
Disk scale length and central surface brightness for a sample of about 29955 bright disk galaxies from the Sloan Digital Sky Survey have been analysed. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variati on of the scale lengths for different types of disk/spiral galaxies and present distributions and typical trends of scale lengths all the SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. We use the volume corrected results in the r-band and revisit the relation between these parameters and the galaxy morphology. The derived scale lengths presented here are representative for a typical galaxy mass of 10^10.8 solarmasses, and the RMS dispersion is larger for more massive galaxies. We analyse the scale-length-central disk brightness plane and further investigate the Freeman Law and confirm that it indeed defines an upper limit for disk central surface brightness in bright disks (r<17.0), and that disks in late type spirals (T > 6) have fainter central surface brightness. Our results are based on a sample of galaxies in the local universe (z< 0.3) that is two orders of magnitudes larger than any sample previously studied, and deliver statistically significant results that provide a comprehensive test bed for future theoretical studies and numerical simulations of galaxy formation and evolution.
111 - B. S. Koribalski 2016
Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morp hology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.
87 - D. Lutz , S. Berta , A. Contursi 2015
We use Herschel 70 to 160um images to study the size of the far-infrared emitting region in about 400 local galaxies and quasar (QSO) hosts. The sample includes normal `main-sequence star-forming galaxies, as well as infrared luminous galaxies and Pa lomar-Green QSOs, with different levels and structures of star formation. Assuming Gaussian spatial distribution of the far-infrared (FIR) emission, the excellent stability of the Herschel point spread function (PSF) enables us to measure sizes well below the PSF width, by subtracting widths in quadrature. We derive scalings of FIR size and surface brightness of local galaxies with FIR luminosity, with distance from the star-forming main-sequence, and with FIR color. Luminosities L_FIR ~ 10^11 L_Sun can be reached with a variety of structures spanning 2 dex in size. Ultraluminous L_FIR >~ 10^12 L_Sun galaxies far above the main-sequence inevitably have small Re_70um ~ 0.5 kpc FIR emitting regions with large surface brightness, and can be close to optically thick in the FIR on average over these regions. Compared to these local relations, first ALMA sizes for the dust emission regions in high redshift galaxies, measured at somewhat longer rest wavelengths, suggest larger sizes at the same IR luminosity. We report a remarkably tight relation with 0.15 dex scatter between FIR surface brightness and the ratio of [CII] 158um emission and FIR emission -- the so-called [CII]-deficit is more tightly linked to surface brightness than to FIR luminosity or FIR color. Among 33 z <~ 0.1 PG QSOs with typical L_FIR/L_Bol,AGN ~ 0.1, 19 have a measured 70um half light radius, with median Re_70um = 1.1kpc. This is consistent with the FIR size for galaxies with similar L_FIR but lacking a QSO, in accordance with a scenario where the rest FIR emission of these types of QSOs is, in most cases, due to host star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا