ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Multiphase Investment Strategies for Influencing Opinions in a Social Network

341   0   0.0 ( 0 )
 نشر من قبل Swapnil Dhamal
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of optimally investing in nodes of a social network in a competitive setting, where two camps aim to maximize adoption of their opinions by the population. In particular, we consider the possibility of campaigning in multiple phases, where the final opinion of a node in a phase acts as its initial biased opinion for the following phase. Using an extension of the popular DeGroot-Friedkin model, we formulate the utility functions of the camps, and show that they involve what can be interpreted as multiphase Katz centrality. Focusing on two phases, we analytically derive Nash equilibrium investment strategies, and the extent of loss that a camp would incur if it acted myopically. Our simulation study affirms that nodes attributing higher weightage to initial biases necessitate higher investment in the first phase, so as to influence these biases for the terminal phase. We then study the setting in which a camps influence on a node depends on its initial bias. For single camp, we present a polynomial time algorithm for determining an optimal way to split the budget between the two phases. For competing camps, we show the existence of Nash equilibria under reasonable assumptions, and that they can be computed in polynomial time.



قيم البحث

اقرأ أيضاً

We study the problem of optimally investing in nodes of a social network in a competitive setting, wherein two camps aim to drive the average opinion of the population in their own favor. Using a well-established model of opinion dynamics, we formula te the problem as a zero-sum game with its players being the two camps. We derive optimal investment strategies for both camps, and show that a random investment strategy is optimal when the underlying network follows a popular class of weight distributions. We study a broad framework, where we consider various well-motivated settings of the problem, namely, when the influence of a camp on a node is a concave function of its investment on that node, when a camp aims at maximizing competitors investment or deviation from its desired investment, and when one of the camps has uncertain information about the values of the model parameters. We also study a Stackelberg variant of this game under common coupled constraints on the combined investments by the camps and derive their equilibrium strategies, and hence quantify the first-mover advantage. For a quantitative and illustrative study, we conduct simulations on real-world datasets and provide results and insights.
We propose a setting for two-phase opinion dynamics in social networks, where a nodes final opinion in the first phase acts as its initial biased opinion in the second phase. In this setting, we study the problem of two camps aiming to maximize adopt ion of their respective opinions, by strategically investing on nodes in the two phases. A nodes initial opinion in the second phase naturally plays a key role in determining the final opinion of that node, and hence also of other nodes in the network due to its influence on them. More importantly, this bias also determines the effectiveness of a camps investment on that node in the second phase. To formalize this two-phase investment setting, we propose an extension of Friedkin-Johnsen model, and hence formulate the utility functions of the camps. There is a tradeoff while splitting the budget between the two phases. A lower investment in the first phase results in worse initial biases for the second phase, while a higher investment spares a lower available budget for the second phase. We first analyze the non-competitive case where only one camp invests, for which we present a polynomial time algorithm for determining an optimal way to split the camps budget between the two phases. We then analyze the case of competing camps, where we show the existence of Nash equilibrium and that it can be computed in polynomial time under reasonable assumptions. We conclude our study with simulations on real-world network datasets, in order to quantify the effects of the initial biases and the weightage attributed by nodes to their initial biases, as well as that of a camp deviating from its equilibrium strategy. Our main conclusion is that, if nodes attribute high weightage to their initial biases, it is advantageous to have a high investment in the first phase, so as to effectively influence the biases to be harnessed in the second phase.
Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging wo rk in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individuals social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.
We study the continuous time portfolio optimization model on the market where the mean returns of individual securities or asset categories are linearly dependent on underlying economic factors. We introduce the functional $Q_gamma$ featuring the exp ected earnings yield of portfolio minus a penalty term proportional with a coefficient $gamma$ to the variance when we keep the value of the factor levels fixed. The coefficient $gamma$ plays the role of a risk-aversion parameter. We find the optimal trading positions that can be obtained as the solution to a maximization problem for $Q_gamma$ at any moment of time. The single-factor case is analyzed in more details. We present a simple asset allocation example featuring an interest rate which affects a stock index and also serves as a second investment opportunity. We consider two possibilities: the interest rate for the bank account is governed by Vasicek-type and Cox-Ingersoll-Ross dynamics, respectively. Then we compare our results with the theory of Bielecki and Pliska where the authors employ the methods of the risk-sensitive control theory thereby using an infinite horizon objective featuring the long run expected growth rate, the asymptotic variance, and a risk-aversion parameter similar to $gamma$.
The structure of communication networks is an important determinant of the capacity of teams, organizations and societies to solve policy, business and science problems. Yet, previous studies reached contradictory results about the relationship betwe en network structure and performance, finding support for the superiority of both well-connected efficient and poorly connected inefficient network structures. Here we argue that understanding how communication networks affect group performance requires taking into consideration the social learning strategies of individual team members. We show that efficient networks outperform inefficient networks when individuals rely on conformity by copying the most frequent solution among their contacts. However, inefficient networks are superior when individuals follow the best member by copying the group member with the highest payoff. In addition, groups relying on conformity based on a small sample of others excel at complex tasks, while groups following the best member achieve greatest performance for simple tasks. Our findings reconcile contradictory results in the literature and have broad implications for the study of social learning across disciplines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا