ﻻ يوجد ملخص باللغة العربية
We present optical and near-infrared observations of a low-luminosity Type IIP supernova (SN) 2016bkv from the initial rising phase to the plateau phase. Our observations show that the end of the plateau is extended to $gtrsim 140$ days since the explosion, indicating that this SN takes one of the longest time to finish the plateau phase. among Type IIP SNe (SNe IIP), including low-luminosity (LL) SNe IIP. The line velocities of various ions at the middle of the plateau phase are as low as 1,000--1,500 km s$^{-1}$, which is the lowest even among LL SNe IIP. These measurements imply that the ejecta mass in SN 2016bkv is larger than that of the well-studied LL IIP SN 2003Z. In the early phase, SN 2016bkv shows a strong bump in the light curve. In addition, the optical spectra in this bump phase exhibit a blue continuum accompanied with a narrow H$alpha$ emission line. These features indicate an interaction between the SN ejecta and the circumstellar matter (CSM) as in SNe IIn. Assuming the ejecta-CSM interaction scenario, the mass loss rate is estimated to be $sim 1.7 times 10^{-2} M_{odot}$ yr$^{-1}$ within a few years before the SN explosion. This is comparable to or even larger than the largest mass loss rate observed for the Galactic red supergiants ($sim 10^{-3} M_{odot}$ yr$^{-1}$ for VY CMa). We suggest that the progenitor star of SN 2016bkv experienced a violent mass loss just before the SN explosion.
While interaction with circumstellar material is known to play an important role in Type IIn supernovae (SNe), analyses of the more common SNe IIP and IIL have not traditionally included interaction as a significant power source. However, recent camp
Hydrogen-rich, core-collapse supernovae are typically divided into four classes: IIP, IIL, IIn, and IIb. In general, interaction with circumstellar material is only considered for Type IIn supernovae. However, recent hydrodynamic modeling of IIP and
This paper describes the rapidly evolving and unusual supernova LSQ13ddu, discovered by the La Silla-QUEST survey. LSQ13ddu displayed a rapid rise of just 4.8$pm$0.9 d to reach a peak brightness of $-$19.70$pm$0.02 mag in the $mathit{LSQgr}$ band. Ea
We present the photometry and spectroscopy of SN 2015an, a Type II Supernova (SN) in IC 2367. The recombination phase of the SN lasts up to $sim$120 d, with a decline rate of 1.24 mag/100d, higher than the typical SNe IIP. The SN exhibits bluer colou
We present extensive optical ($UBVRI$, $griz$, and open CCD) and near-infrared ($ZYJH$) photometry for the very nearby Type IIP SN ~2013ej extending from +1 to +461 days after shock breakout, estimated to be MJD $56496.9pm0.3$. Substantial time serie