ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron stars and millisecond pulsars in star clusters: implications for the diffuse $gamma$-radiation from the Galactic Centre

214   0   0.0 ( 0 )
 نشر من قبل Giacomo Fragione
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Globular clusters (GCs) are the ideal environment for the formation of neutron stars (NSs) and millisecond pulsars (MSPs). NSs origin and evolution provide a useful information on stellar dynamics and evolution in star clusters, and are among the most interesting astrophysical objects, being precursors of several high-energy phenomena such as gravitational waves and gamma-ray bursts. Due to a large velocity kick that they receive at birth, most of the NSs escape the local field, affecting the evolution and dynamics of their parent cluster. In this paper, we study the origin and dynamical evolution of NSs within GCs with different initial masses, metallicities and primordial binary fractions. We find that the radial profile of NSs is shaped by the BH content of the cluster, which partially quenches the NS segregation until most of the BHs are ejected from the system. Independently on the cluster mass and initial configuration, the NSs map the average stellar population, as their average radial distance is $approx 60-80%$ of the cluster half-mass radius. Finally, by assuming a recycling fraction of $f_mathrm{rec}=0.1$ and an average MSP gamma-ray emission of $L_gamma=2times 10^{33}$ erg s$^{-1}$, we show that the typical gamma-ray emission from our GCs agrees with observations and supports the MSP origin of the gamma-ray excess signal observed by the Fermi-LAT telescope in the Galactic Centre.

قيم البحث

اقرأ أيضاً

Pulsars (PSRs) orbiting intermediate or supermassive black holes at the centre of galaxies and globular clusters are known as Extreme Mass Ratio Binaries (EMRBs) and have been identified as precision probes of strong-field GR. For appropriate orbital parameters, some of these systems may also emit gravitational radiation in a `burst-like pattern. The observation of this burst radiation in conjunction with the electromagnetic radio timing signal would allow for multimessenger astronomy in strong-field gravitational regimes. In this work we investigate gravitational radiation from these PSR-EMRBs, calculating the waveforms and SNRs and explore the influence of this GW on the pulsar radio signal. We find that for typical PSR-EMRBs, gravitational burst radiation should be detectable from both the Galactic centre and the centre of stellar clusters, and that this radiation will not meaningfully affect the pulsar timing signal, allowing PSR-EMRB to remain `clean test-beds of strong-field GR.
We demonstrate that young star clusters have a $gamma$-ray surface brightness comparable to that of the diffuse Galactic emission (DGE), and estimate that their sky coverage in the direction of the inner Galaxy exceeds unity. We therefore suggest that they comprise a significant fraction of the DGE.
To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observe d in any Galactic object with the exception of Sgr A*. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ~ 16-33 microgauss; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (~ 12 degrees). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths >~ 100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.
Millisecond Pulsars are second most abundant source population discovered by the Fermi-LAT. They might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT, the IDGRB. Gamma-ray sources also contribute to the anis otropy of the IDGRB measured on small scales by Fermi-LAT. We aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. We model the MSPs spatial distribution in the Galaxy and the gamma-ray emission parameters by considering radio and gamma-ray observational constraints. By simulating a large number of MSPs populations, we compute the average diffuse emission and the anisotropy 1-sigma upper limit. The emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10 degrees in latitude. The 1-sigma upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30 degrees. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude gamma-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes. Nevertheless, given the MSP distribution, we expect them to contribute significantly to the gamma-ray diffuse emission at low latitudes. Since, along the galactic disk, the population of young Pulsars overcomes in number the one of MSPs, we compute the gamma-ray emission from the whole population of unresolved Pulsars in two low-latitude regions: the inner Galaxy and the galactic center.
The inner 10 pc of our galaxy contains many counterpart candidates of the very high energy (VHE; > 100 GeV) gamma-ray point source HESS J1745-290. Within the point spread function of the H.E.S.S. measurement, at least three objects are capable of acc elerating particles to very high energies and beyond, and of providing the observed gamma-ray flux. Previous attempts to address this source confusion were hampered by the fact that the projected distances between those objects were of the order of the error circle radius of the emission centroid (34, dominated by the pointing uncertainty of the H.E.S.S. instrument). Here we present H.E.S.S. data of the Galactic Centre region, recorded with an improved control of the instrument pointing compared to H.E.S.S. standard pointing procedures. Stars observed during gamma-ray observations by optical guiding cameras mounted on each H.E.S.S. telescope are used for off-line pointing calibration, thereby decreasing the systematic pointing uncertainties from 20 to 6 per axis. The position of HESS J1745-290 is obtained by fitting a multi-Gaussian profile to the background-subtracted gamma-ray count map. A spatial comparison of the best-fit position of HESS J1745-290 with the position and morphology of candidate counterparts is performed. The position is, within a total error circle radius of 13, coincident with the position of the supermassive black hole Sgr A* and the recently discovered pulsar wind nebula candidate G359.95-0.04. It is significantly displaced from the centroid of the supernova remnant Sgr A East, excluding this object with high probability as the dominant source of the VHE gamma-ray emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا