ﻻ يوجد ملخص باللغة العربية
Sequential, multiple assignment, randomized trial (SMART) designs have become increasingly popular in the field of precision medicine by providing a means for comparing sequences of treatments tailored to the individual patient, i.e., dynamic treatment regime (DTR). The construction of evidence-based DTRs promises a replacement to adhoc one-size-fits-all decisions pervasive in patient care. However, there are substantial statistical challenges in sizing SMART designs due to the complex correlation structure between the DTRs embedded in the design. Since the primary goal of SMARTs is the construction of an optimal DTR, investigators are interested in sizing SMARTs based on the ability to screen out DTRs inferior to the optimal DTR by a given amount which cannot be done using existing methods. In this paper, we fill this gap by developing a rigorous power analysis framework that leverages multiple comparisons with the best methodology. Our method employs Monte Carlo simulation in order to compute the minimum number of individuals to enroll in an arbitrary SMART. We will evaluate our method through extensive simulation studies. We will illustrate our method by retrospectively computing the power in the Extending Treatment Effectiveness of Naltrexone SMART study.
Assessing the relative merits of sportsmen and women whose careers took place far apart in time via a suitable statistical model is a complex task as any comparison is compromised by fundamental changes to the sport and society and often handicapped
One of the main goals of sequential, multiple assignment, randomized trials (SMART) is to find the most efficacious design embedded dynamic treatment regimes. The analysis method known as multiple comparisons with the best (MCB) allows comparison bet
Exploratory spatial data analysis (ESDA) plays a key role in research that includes geographic data. In ESDA, analysts often want to be able to visualize observations and local relationships on a map. However, software dedicated to visualizing local
In many health domains such as substance-use, outcomes are often counts with an excessive number of zeros (EZ) - count data having zero counts at a rate significantly higher than that expected of a standard count distribution (e.g., Poisson). However
Detection of interactions between treatment effects and patient descriptors in clinical trials is critical for optimizing the drug development process. The increasing volume of data accumulated in clinical trials provides a unique opportunity to disc