ترغب بنشر مسار تعليمي؟ اضغط هنا

The Breakthrough Listen Search for Intelligent Life: Wide-bandwidth Digital Instrumentation for the CSIRO Parkes 64-m Telescope

133   0   0.0 ( 0 )
 نشر من قبل Danny Price
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Breakthrough Listen is a ten-year initiative to search for signatures of technologies created by extraterrestrial civilizations at radio and optical wavelengths. Here, we detail the digital data recording system deployed for Breakthrough Listen observations at the 64-m aperture CSIRO Parkes Telescope in New South Wales, Australia. The recording system currently implements two recording modes: a dual-polarization, 1.125 GHz bandwidth mode for single beam observations, and a 26-input, 308-MHz bandwidth mode for the 21-cm multibeam receiver. The system is also designed to support a 3 GHz single-beam mode for the forthcoming Parkes ultra-wideband feed. In this paper, we present details of the system architecture, provide an overview of hardware and software, and present initial performance results.

قيم البحث

اقرأ أيضاً

New radio telescope arrays offer unique opportunities for large-scale commensal SETI surveys. Ethernet-based architectures are allowing multiple users to access telescope data simultaneously by means of multicast Ethernet subscriptions. Breakthrough Listen will take advantage of this by conducting a commensal SETI survey on the MeerKAT radio telescope in South Africa. By subscribing to raw voltage data streams, Breakthrough Listen will be able to beamform commensally anywhere within the field of view during primary science observations. The survey will be conducted with unprecedented speed by forming and processing 64 coherent beams simultaneously, allowing the observation of several million objects within a few years. Both coherent and incoherent observing modes are planned. We present the list of desired sources for observation and explain how these sources were selected from the Gaia DR2 catalog. Given observations planned by MeerKATs primary telescope users, we discuss their effects on the commensal survey and propose a commensal observing strategy in response. Finally, we outline our proposed approach towards observing one million nearby stars and analyse expected observing progress in the coming years.
Breakthrough Listen is the most comprehensive and sensitive search for extraterrestrial intelligence (SETI) to date, employing a collection of international observational facilities including both radio and optical telescopes. During the first three years of the Listen program, thousands of targets have been observed with the Green Bank Telescope (GBT), Parkes Telescope and Automated Planet Finder. At GBT and Parkes, observations have been performed ranging from 700 MHz to 26 GHz, with raw data volumes averaging over 1PB / day. A pseudo-real time software spectroscopy suite is used to produce multi-resolution spectrograms amounting to approximately 400 GB hr^-1 GHz^-1 beam^-1. For certain targets, raw baseband voltage data is also preserved. Observations with the Automated Planet Finder produce both 2-dimensional and 1-dimensional high resolution (R~10^5) echelle spectral data. Although the primary purpose of Listen data acquisition is for SETI, a range of secondary science has also been performed with these data, including studies of fast radio bursts. Other current and potential research topics include spectral line studies, searches for certain kinds of dark matter, probes of interstellar scattering, pulsar searches, radio transient searches and investigations of stellar activity. Listen data are also being used in the development of algorithms, including machine learning approaches to modulation scheme classification and outlier detection, that have wide applicability not just for astronomical research but for a broad range of science and engineering. In this paper, we describe the hardware and software pipeline used for collection, reduction, archival, and public dissemination of Listen data. We describe the data formats and tools, and present Breakthrough Listen Data Release 1.0 (BLDR 1.0), a defined set of publicly-available raw and reduced data totalling 1 PB.
Boyajian s Star (KIC 8462852) has received significant attention due to its unusual periodic brightness fluctuations detected by the Kepler Spacecraft and subsequent ground based observations. Possible explanations for the dips in the photometric mea surements include interstellar or circumstellar dust, and it has been speculated that an artificial megastructure could be responsible. We analyze 177 high-resolution spectra of Boyajians Star in an effort to detect potential laser signals from extraterrestrial civilizations. The spectra were obtained by the Lick Observatorys Automated Planet Finder telescope as part of the Breakthrough Listen Project, and cover the wavelength range of visible light from 374 to 970 nm. We calculate that the APF would be capable of detecting lasers of power greater than approximately 24 MW at the distance of Boyajians Star, d = 1470 ly. The top candidates from the analysis can all be explained as either cosmic ray hits, stellar emission lines or atmospheric air glow emission lines.
A line-of-sight towards the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys towards the G C. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hours of deep observations across 0.7--93 GHz. We report preliminary results from our survey for ETI beacons across 1--8 GHz with 7.0 and 11.2 hours of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1--4 GHz and 3.9--8 GHz with EIRP limits of $geq$4$times$10$^{18}$ W among 60 million stars and $geq$5$times$10$^{17}$ W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9--8 GHz with EIRP $geq$1$times$10$^{14}$ W/Hz with a repetition period $leq$4.3 hours. We also searched our 11.2 hours of deep observations of the GC and its surrounding region for Fast Radio Burst-like magnetars with the DM up to 5000 pc cm$^{-3}$ with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745$-$2900, but did not detect any new transient burst with the peak luminosity limit across our observed band of $geq$10$^{31}$ erg s$^{-1}$ and burst-rate of $geq$0.23 burst-hr$^{-1}$. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC.
The discovery of the ubiquity of habitable extrasolar planets, combined with revolutionary advances in instrumentation and observational capabilities, have ushered in a renaissance in the millenia-old quest to answer our most profound question about the Universe and our place within it - Are we alone? The Breakthrough Listen Initiative, announced in July 2015 as a 10-year 100M USD program, is the most comprehensive effort in history to quantify the distribution of advanced, technologically capable life in the universe. In this white paper, we outline the status of the on-going observing campaign with our primary observing facilities, as well as planned activities with these instruments over the next few years. We also list collaborative facilities which will conduct searches for technosignatures in either primary observing mode, or commensally. We highlight some of the novel analysis techniques we are bringing to bear on multi-petabyte data sets, including machine learning tools we are deploying to search for a broader range of technosignatures than was previously possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا