ترغب بنشر مسار تعليمي؟ اضغط هنا

Shaping nanoparticle fingerprints at the interface of cholesteric droplets

56   0   0.0 ( 0 )
 نشر من قبل Lisa Tran
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ordering of nanoparticles into predetermined configurations is of importance to the design of advanced technologies. In this work, we moderate the surface anchoring against the bulk elasticity of liquid crystals to dynamically shape nanoparticle assemblies at a fluid interface. By tuning the degree of nanoparticle hydrophobicity with surfactants that alter the molecular anchoring of liquid crystals, we pattern nanoparticles at the interface of cholesteric liquid crystal emulsions. Adjusting the particle hydrophobicity more finely further modifies the rigidity of assemblies. We establish that patterns are tunable by varying both surfactant and chiral dopant concentrations. Since particle assembly occurs at the interface with the desired structures exposed to the surrounding phase, we demonstrate that particles can be readily crosslinked and manipulated, forming structures that retain their shape under external perturbations. This study establishes the templating of nanomaterials into reconfigurable arrangements. Interfacial assembly is tempered by elastic patterns that arise from the geometric frustration of confined cholesterics. This work serves as a basis for creating materials with chemical heterogeneity and with linear, periodic structures, essential for optical and energy applications.

قيم البحث

اقرأ أيضاً

We simulate colloids (radius $R sim 1mu$m) trapped at the interface between a cholesteric liquid crystal and an immiscible oil, at which the helical order (pitch p) in the bulk conflicts with the orientation induced at the interface, stabilizing an o rdered array of disclinations. For weak anchoring strength W of the director field at the colloidal surface, this creates a template, favoring particle positions eitheron top of or midway between defect lines, depending on $alpha = R/p$. For small $alpha$, optical microscopy experiments confirm this picture, but for larger $alpha$ no templating is seen. This may stem from the emergence at moderate W of a rugged energy landscape associated with defect reconnections.
We induce and investigate the coarsening and melting dynamics of an initially static nanoparticle colloidal monolayer at an ionic liquid-vacuum interface, driven by a focused, scanning electron beam. Coarsening occurs through grain interface migratio n and larger-scale motions such as grain rotations, often facilitated by sliding dislocations. The progressive decrease in area fraction that drives melting of the monolayer is explained using an electrowetting model whereby particles at the interface are solvated once their accumulating charge recruits sufficient counterions to subsume the particle. Subject to stochastic particle removal from the monolayer, melting is recapitulated in simulations with a Lennard-Jones potential. This new driving mechanism for colloidal systems, whose dynamical timescales we show can be controlled with the accelerating voltage, opens the possibility to manipulate particle interactions dynamically without need to vary particle intrinsic properties or surface treatments. Furthermore, the decrease in particle size availed by electron imaging presents opportunities to observe force and time scales in a lesser-explored regime intermediate between typical colloidal and molecular systems.
We study the light scattering by localized quasi planar excitations of a Cholesteric Liquid Crystal known as spherulites. Due to the anisotropic optical properties of the medium and the peculiar shape of the excitations, we quantitatively evaluate th e cross section of the axis-rotation of polarized light. Because of the complexity of the system under consideration, first we give a simplified, but analytical, description of the spherulite and we compare the Born approximation results in this setting with those obtained by resorting to a numerical exact solution. The effects of changing values of the driving external static electric (or magnetic) field is considered. Possible applications of the phenomenon are envisaged.
In this paper, we have tried to find out the origin of magnetism in Gold nanoparticles (Au- NPs). We observe that upon incorporating Gold nanoparticles (Au-NPs) in Fe3O4 nanoparticle medium the net magnetisation increases compared to the pure Fe3O4 n anoparticle medium. This increase of magnetization can be attributed to the large orbital magnetic moment formation at the Au/magnetic particle interface indicating that magnetism observed in Au-NPs is an interfacial effect. This interfacial effect has been supported by the observation of sudden transition from positive saturated magnetisation to a negative diamagnetic contribution as a function of magnetic field on citrate coated gold Au-NPs.
Blue phases are networks of disclination lines, which occur in cholesteric liquid crystals near the transition to the isotropic phase. They have recently been used for the new generation of fast switching liquid crystal displays. Here we study numeri cally the steady states and switching hydrodynamics of blue phase I (BPI) and blue phase II (BPII) cells subjected to an electric field. When the field is on, there are three regimes: for very weak fields (and strong anchoring at the boundaries) the blue phases are almost unaffected, for intermediate fields the disclinations twist (for BPI) and unzip (for BPII), whereas for very large voltages the network dissolves in the bulk of the cell. Interestingly, we find that a BPII cell can recover its original structure when the field is switched off, whereas a BPI cell is found to be trapped more easily into metastable configurations. The kinetic pathways followed during switching on and off entails dramatic reorganisation of the disclination networks. We also discuss the effect of changing the director field anchoring at the boundary planes and of varying the direction of the applied field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا