ﻻ يوجد ملخص باللغة العربية
One of the uncertainties in interpretation of ultra-high energy cosmic ray (UHECR) data comes from the hadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muons observed at the ground from UHECR-induced air showers is expected to depend upon the hadronic interaction model. One may therefore test the hadronic interaction models by comparing the measured number of muons with the MC prediction. In this paper, we present the results of studies of muon densities in UHE extensive air showers obtained by analyzing the signal of surface detector stations which should have high $it{muon , purity}$. The muon purity of a station will depend on both the inclination of the shower and the relative position of the station. In 7 years data from the Telescope Array experiment, we find that the number of particles observed for signals with an expected muon purity of $sim$65% at a lateral distance of 2000 m from the shower core is $1.72 pm 0.10{rm (stat.)} pm 0.37 {rm (syst.)}$ times larger than the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similar effect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a $1.67 pm 0.10 pm 0.36$ excess. We also studied the dependence of these excesses on lateral distances and found a slower decrease of the lateral distribution of muons in the data as compared to the MC, causing larger discrepancy at larger lateral distances.
We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and
We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the F
The Telescope Array observatory utilizes fluorescence detectors and surface detectors to observe air showers produced by ultra high energy cosmic rays in the Earths atmosphere. Cosmic ray events observed in this way are termed hybrid data. The depth
We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment,
We search for correlations between positions of extragalactic objects and arrival directions of Ultra-High Energy Cosmic Rays (UHECRs) with primary energy $E ge 40$ EeV as observed by the surface detector array of the Telescope Array (TA) experiment