ترغب بنشر مسار تعليمي؟ اضغط هنا

J-PLUS: 2-D analysis of the stellar population in NGC 5473 and NGC 5485

72   0   0.0 ( 0 )
 نشر من قبل Izaskun San Roman
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial variations of stellar population properties within a galaxy are intimately related to their formation process. Therefore, spatially resolved studies of galaxies are essential to uncover their formation and assembly. The Javalambre Photometric Local Universe Survey (J-PLUS) is a dedicated multi-filter designed to observed ~8500 deg2 using twelve narrow-, intermediate- and broad-band filters in the optical range. In this study, we test the potential of the multi-filter observation carried out with J-PLUS to investigate the properties of spatially-resolved nearby galaxies. We present detailed 2D maps of stellar population properties (age, metallicity, extinction, and stellar mass surface density) for two early-type galaxies observed in both, J-PLUS and CALIFA surveys: NGC 5473 and NGC 5485. Radial structures are also compared and luminosity- and mass-weighted profiles are derived. We use MUFFIT to process the J-PLUS observations, and two different techniques (STARLIGHT and STECKMAP) to analyze IFU CALIFA data. We demonstrate that this novel technique delivers radial stellar population gradients in good agreement with the IFU technique CALIFA/STECKMAP although comparison of the absolute values reveals the existence of intrinsic systematic differences. Radial stellar population gradients differ when CALIFA/STARLIGHT methodology is used. Age and metallicity radial profiles derived from J-PLUS/MUFFIT are very similar when luminosity- or mass-weighted properties are used, suggesting that the contribution of a younger component is small. Comparison between the three methodologies reveals some discrepancies suggesting that the specific characteristics of each method causes important differences. We conclude that the ages, metallicities and extinction derived for individual galaxies not only depend on the chosen models but also depend on the method used.

قيم البحث

اقرأ أيضاً

Strongly noncircular outer stellar disks have been found in two unbarred SA0 galaxies by analyzing spectroscopic data on the rotation of stars and photometric data on the shape and orientation of the isophotes. In NGC 502, the oval distortion of the disk is manifested as two elliptical rings, the inner and the outer ones, covering wide radial zones between the bulge and the disk and at the outer edge of the stellar disk. Such a structure may be a consequence of the so-called dry minor merger - multiple accretion of gas-free satellites. In NGC 5485, the kinematical major axis does not coincide with the orientation of isophotes in the disk-dominated region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.
We use integral field spectroscopy to study in detail the Wolf-Rayet (WR) population in NGC 3310, spatially resolving 18 star-forming knots with typical sizes of 200-300 pc in the disc of the galaxy hosting a substantial population of WRs. The detect ed emission in the so-called blue bump is attributed mainly to late-type nitrogen WRs (WNL), ranging from a few dozens to several hundreds of stars per region. Our estimated WNL/(WNL+O) ratio is comparable to reported empirical relations once the extinction-corrected emission is further corrected by the presence of dust grains inside the nebula that absorb a non-negligible fraction of UV photons. Comparisons of observables with stellar population models show disagreement by factors larger than 2-3. However, if the effects of interacting binaries and/or photon leakage are taken into account, observations and predictions tend to converge. We estimate the binary fraction of the hii regions hosting WRs to be significant in order to recover the observed X-ray flux, hence proving that the binary channel can be critical when predicting observables. We also explore the connection of the environment with the current hypothesis that WRs can be progenitors to long-duration gamma-ray bursts (GRBs). Galaxy interactions, which can trigger strong episodes of star formation in the central regions, may be a plausible environment where WRs may act as progenitors of GRBs. Finally, even though the chemical abundance is generally homogeneous, we also find weak evidence for rapid N pollution by WR stellar winds at scales of ~ 200 pc.
The aim of this work is to investigate the characteristics of the young stellar population in the spiral galaxy NGC 247. In particular, we focused our attention in its hierarchical clustering distributions and the properties of the smallest groups. W e used multiband Hubble Space Telescope (HST) data from three fields covering more than half of NGC 247 to select the young population. Then, through the path linkage criterion (PLC), we found compact young star groups, and estimated their fundamental parameters, such as their stellar densities, sizes, amount of members and luminosity function (LF) slopes. We also performed a fractal analysis to determinate the clustering properties of this population. We build a stellar density map and the corresponding dendrograms corresponding to the galactic young population to detect large structures and draw their main characteristics. We detected 339 young star groups, for which we computed a mean radius of $sim$ 60 pc and a maximum in the size distribution between 30 and 70 pc. We also obtained LF slopes with a bimodal distribution showing peaks at $sim$ 0.1 and $sim$ 0.2. We identified several candidates to HII regions which follow an excellent spatial correlation with the young groups found by the PLC. We observed that the young population are hierarchically organized, where the smaller and denser structures are within larger and less dense ones. We noticed that all these groups presented a fractal subclustering, following the hierarchical distribution observed in the corresponding stellar density map. For the large young structures observed in this map, we obtained a fractal dimension of $sim$ 1.6-1.8 using the perimeter-area relation and the cumulative size distribution. These values are consistent with a scenario of hierarchical star formation.
We present a study of the young population in the starburst galaxy NGC 253. In particular, we focused our attention on searching young star groups, obtaining their main properties and studying their hierarchical organization. For this task, we used m ultiband images and their corresponding photometric data obtained with the Advanced Camera for Surveys of the Hubble Space Telescope (ACS/HST). We have first derived the absorption affecting the different regions of the galaxy. Then, we applied an automatic and objective searching method over the corrected data in order to detect young star groups. We complemented this result with the construction of the stellar density map for the blue young population. A statistical procedure to decontaminate the photometric diagrams from field stars was applied over the detected groups and we estimated their fundamental parameters. As a result, we built a catalog of 875 new identified young groups with their main characteristics, including coordinates, sizes, estimated number of members, stellar densities, luminosity function (LF) slopes and galactocentric distances. We observed these groups delineate different structures of the galaxy, and they are the last step in the hierarchical way in which the young population is organized. From their size distribution, we found they have typical radius of $sim 40 - 50$ pc. These values are consistent with those ones found in others nearby galaxies. We estimated a mean value of the LF slope of 0.21 and an average density of 0.0006 stars/pc$^3$ for the identified young groups taking into account stars earlier than B6.
We present a comprehensive study of massive young stellar objects (YSOs) in the metal-poor galaxy NGC 6822 using IRAC and MIPS data obtained from the {em Spitzer Space Telescope}. We find over 500 new YSO candidates in seven massive star-formation re gions; these sources were selected using six colour-magnitude cuts. Via spectral energy distribution fitting to the data with YSO radiative transfer models we refine this list, identifying 105 high-confidence and 88 medium-confidence YSO candidates. For these sources we constrain their evolutionary state and estimate their physical properties. The majority of our YSO candidates are massive protostars with an accreting envelope in the initial stages of formation. We fit the mass distribution of the Stage I YSOs with a Kroupa initial mass function and determine a global star-formation rate of 0.039 $M_{odot} yr^{-1}$. This is higher than star-formation rate estimates based on integrated UV fluxes. The new YSO candidates are preferentially located in clusters which correspond to seven active high-mass star-formation regions which are strongly correlated with the 8 and 24 $mu$m emission from PAHs and warm dust. This analysis reveals an embedded high-mass star-formation region, Spitzer I, which hosts the highest number of massive YSO candidates in NGC 6822. The properties of Spitzer I suggest it is younger and more active than the other prominent H,{sc ii} and star-formation regions in the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا