ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak-lensing mass calibration of the Sunyaev-Zeldovich effect using APEX-SZ galaxy clusters

78   0   0.0 ( 0 )
 نشر من قبل Aarti Nagarajan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of galaxy clusters as precision cosmological probes relies on an accurate determination of their masses. However, inferring the relationship between cluster mass and observables from direct observations is difficult and prone to sample selection biases. In this work, we use weak lensing as the best possible proxy for cluster mass to calibrate the Sunyaev-Zeldovich (SZ) effect measurements from the APEX-SZ experiment. For a well-defined (ROSAT) X-ray complete cluster sample, we calibrate the integrated Comptonization parameter, $Y_{rm SZ}$, to the weak-lensing derived total cluster mass, $M_{500}$. We employ a novel Bayesian approach to account for the selection effects by jointly fitting both the SZ Comptonization, $Y_{rm SZ}text{--}M_{500}$, and the X-ray luminosity, $L_{rm x}text{--}M_{500}$, scaling relations. We also account for a possible correlation between the intrinsic (log-normal) scatter of $L_{rm x}$ and $Y_{rm SZ}$ at fixed mass. We find the corresponding correlation coefficient to be $r= 0.47_{-0.35}^{+0.24}$, and at the current precision level our constraints on the scaling relations are consistent with previous works. For our APEX-SZ sample, we find that ignoring the covariance between the SZ and X-ray observables biases the normalization of the $Y_{rm SZ}text{--}M_{500}$ scaling high by $1text{--}2sigma$ and the slope low by $sim 1sigma$, even when the SZ effect plays no role in the sample selection. We conclude that for higher-precision data and larger cluster samples, as anticipated from on-going and near-future cluster cosmology experiments, similar biases (due to intrinsic covariances of cluster observables) in the scaling relations will dominate the cosmological error budget if not accounted for correctly.

قيم البحث

اقرأ أيضاً

Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based we ak lensing observations of 19 South Pole Telescope (SPT) selected clusters at redshifts $0.29 leq z leq 0.61$ and combine them with previously reported space-based observations of 13 galaxy clusters at redshifts $0.576 leq z leq 1.132$ to constrain the cluster mass scaling relations with the Sunyaev-Zeldovich effect (SZE), the cluster gas mass mgas, and yx, the product of mgas and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 5.6% in cluster mass (68% confidence). Our constraints on the mass--X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass--SZE scaling relation are consistent with the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.
Using $sim$140 deg$^2$ Subaru Hyper Suprime-Cam (HSC) survey data, we stack the weak lensing (WL) signal around five Planck clusters found within the footprint. This yields a 15$sigma$ detection of the mean Planck cluster mass density profile. The fi ve Planck clusters span a relatively wide mass range, $M_{rm WL,500c} = (2-30)times10^{14},M_odot/h$ with a mean mass of $M_{rm WL,500c} = (4.15pm0.61)times10^{14},M_odot/h$. The ratio of the stacked Planck Sunyaev-Zeldovich (SZ) mass to the stacked WL mass is $ langle M_{rm SZ}rangle/langle M_{rm WL}rangle = 1-b = 0.80pm0.14$. This mass bias is consistent with previous WL mass calibrations of Planck clusters within the errors. We discuss the implications of our findings for the calibration of SZ cluster counts and the much discussed tension between Planck SZ cluster counts and Planck $Lambda$CDM cosmology.
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical compl exities in these theories, on phenomenological grounds, the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zeldovich (SZ) effect. We also use the model independent values of Hubble parameter $H(z)$ smoothed by a non-parametric method, Gaussian process. Within $1sigma$ confidence region, we obtain the mass of graviton $m_g < 5.9 times 10^{-30}$ eV with the corresponding Compton length scale $lambda_g > 6.82$ Mpc from weak lensing and $m_g < 8.31 times 10^{-30}$ eV with $lambda_g > 5.012$ Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.
We present weak-lensing measurements using the first-year data from the Hyper Suprime-Cam Strategic Survey Program on the Subaru telescope for eight galaxy clusters selected through their thermal Sunyaev-Zeldovich (SZ) signal measured at 148 GHz with the Atacama Cosmology Telescope Polarimeter experiment. The overlap between the two surveys in this work is 33.8 square degrees, before masking bright stars. The signal-to-noise ratio of individual cluster lensing measurements ranges from 2.2 to 8.7, with a total of 11.1 for the stacked cluster weak-lensing signal. We fit for an average weak-lensing mass distribution using three different profiles, a Navarro-Frenk-White profile, a dark-matter-only emulated profile, and a full cosmological hydrodynamic emulated profile. We interpret the differences among the masses inferred by these models as a systematic error of 10%, which is currently smaller than the statistical error. We obtain the ratio of the SZ-estimated mass to the lensing-estimated mass (the so-called hydrostatic mass bias $1-b$) of $0.74^{+0.13}_{-0.12}$, which is comparable to previous SZ-selected clusters from the Atacama Cosmology Telescope and from the {sl Planck} Satellite. We conclude with a discussion of the implications for cosmological parameters inferred from cluster abundances compared to cosmic microwave background primary anisotropy measurements.
We present the first weak-lensing-based scaling relation between galaxy cluster mass, M_wl, and integrated Compton parameter Y_sph. Observations of 18 galaxy clusters at z~0.2 were obtained with the Subaru 8.2-m telescope and the Sunyaev-Zeldovich Ar ray. The M_wl-Y_sph scaling relations, measured at Delta=500, 1000, and 2500 rho_c, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M_wl at fixed Y_sph of 20%, larger than both previous measurements of M_HSE-Y_sph scatter as well as the scatter in true mass at fixed Y_sph found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30-40% larger M_wl for undisturbed compared to disturbed clusters at the same Y_sph at r_500. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line-of-sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا