ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal rectification in a double quantum dots system with polaron effect

60   0   0.0 ( 0 )
 نشر من قبل Gaomin Tang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the rectification of heat current carried by electrons through a double quantum dot (DQD) system under a temperature bias. The DQD can be realized by molecules such as suspended carbon nanotube and be described by the Anderson-Holstein model in presence of electron-phonon interaction. Strong electron-phonon interaction can lead to formation of polaronic states in which electronic states are dressed by phonon cloud. Dressed tunneling approximation (DTA), which is nonperturbative in dealing with strong electron-phonon interaction, is employed to obtain the heat current expression. In DTA, self-energies are dressed by phonon cloud operator and are temperature dependent. The temperature dependency of imaginary part of dressed retarded self-energy gives rise to the asymmetry of the system and is the necessary condition of thermal rectification. On top of this, one can either tune DQD effective energy levels such that $|bar{epsilon}_1| eq |bar{epsilon}_2|$ or have asymmetric dot-lead couplings to achieve thermal rectification. We numerically find that increasing electron-phonon coupling and reducing inter dot coupling can both improve thermal rectification effect, while the electronic heat current is reduced.



قيم البحث

اقرأ أيضاً

We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of SU(4) symmetry in the Kondo regime. We s how that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a non-monotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.
Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy con duction band transition due to coherent acoustic phonon generation. The subsequent single exponential decay yields long intraband dephasing times of 90 ps. We find excellent agreement between our measured and calculated FWM dynamics, and show that both real and virtual acoustic phonon processes are necessary to explain the temperature dependence of the polarization decay.
We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a $pi$ state, already present in the single dot case, this system exhibits a richer magnetic be havior due to the competition between Kondo and inter-dot antiferromagnetic coupling. We obtain results for the Josephson current which may help to understand recent experiments on superconductor-metallofullerene dimer junctions. We show that in such a system the Josephson effect can be used to control its magnetic configuration.
A system of an array of side-coupled quantum-dots attached to a quantum wire is studied theoretically. Transport through the quantum wire is investigated by means of a noninteracting Anderson tunneling Hamiltonian. Analytical expressions of the trans mission probability and phase are given. The transmission probability shows an energy spectrum with forbidden and allowed bands that depends on the up-down asymmetry of the system. In up-down symmetry only the gap survives, and in up-down asymmetry an allowed band is formed. We show that the allowed band arises by the indirect coupling between the up and down quantum dots. In addition, the band edges can be controlled by the degree of asymmetry of the quantum dots. We discuss the analogy between this phenomenon with the Dicke effect in optics.
We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Ov erhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called dark states, and the elimination of the difference field. We show that in the case of unequal dots, build up of difference fields generally accompanies the nuclear polarization process, whereas for nearly identical dots, build up of difference fields competes with polarization saturation in dark states. The elimination of the difference field does not, in general, correspond to a stable steady state of the polarization process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا