ﻻ يوجد ملخص باللغة العربية
The interaction of ion beams with matter includes the investigation of the basic principles of ion stopping in heated materials. An unsolved question is the effect of different, especially higher, ion beam fluences on ion stopping in solid targets. This is relevant in applications such as in fusion sciences. To address this question, a Thomson parabola was built for the Neutralized Drift Compression eXperiment (NDCX-II) for ion energy-loss measurements at different ion beam fluences. The linear induction accelerator NDCX-II delivers 2 ns short, intense ion pulses, up to several tens of nC/pulse, or 10$^{10}$-10$^{11}$ ions, with a peak kinetic energy of ~1.1 MeV and a minimal spot size of 2 mm FWHM. For this particular accelerator the energy determination with conventional beam diagnostics, for example, time of flight measurements, is imprecise due to the non-trivial longitudinal phase space of the beam. In contrast, a Thomson parabola is well suited to reliably determine the beam energy distribution. The Thomson parabola differentiates charged particles by energy and charge-to-mass ratio, through deflection of charged particles by electric and magnetic fields. During first proof-of-principle experiments, we achieved to reproduce the average initial helium beam energy as predicted by computer simulations with a deviation of only 1.4 %. Successful energy-loss measurements with 1 {mu}m thick Silicon Nitride foils show the suitability of the accelerator for such experiments. The initial ion energy was determined during a primary measurement without a target, while a second measurement, incorporating the target, was used to determine the transmitted energy. The energy-loss was then determined as the difference between the two energies.
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kineti
The Neutralized Drift Compression Experiment-II (NDCX-II) is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II b
The Medipix detector is the first device dedicated to measuring mixed-field radiation in the CMS cavern and able to distinguish between different particle types. Medipix2-MXR chips bump bonded to silicon sensors with various neutron conversion layers
ALICE is the experiment at the CERN LHC devoted to study heavy-ion collisions. An upgrade program of the ALICE detector is ongoing toward the LHC Run 3 starting in 2022 together with the upgrade of the data acquisition system and the detector control
The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium $beta$-decay endpoint region with a sensitivity on $m_ u$ of 0.2$,$eV/c$^2