ترغب بنشر مسار تعليمي؟ اضغط هنا

Canted antiferromagnetism in phase-pure CuMnSb

89   0   0.0 ( 0 )
 نشر من قبل Andreas Bauer
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the low-temperature properties of phase-pure single crystals of the half-Heusler compound CuMnSb grown by means of optical float-zoning. The magnetization, specific heat, electrical resistivity, and Hall effect of our single crystals exhibit an antiferromagnetic transition at $T_{mathrm{N}} = 55~mathrm{K}$ and a second anomaly at a temperature $T^{*} approx 34~mathrm{K}$. Powder and single-crystal neutron diffraction establish an ordered magnetic moment of $(3.9pm0.1)~mu_{mathrm{B}}/mathrm{f.u.}$, consistent with the effective moment inferred from the Curie-Weiss dependence of the susceptibility. Below $T_{mathrm{N}}$, the Mn sublattice displays commensurate type-II antiferromagnetic order with propagation vectors and magnetic moments along $langle111rangle$ (magnetic space group $R[I]3c$). Surprisingly, below $T^{*}$, the moments tilt away from $langle111rangle$ by a finite angle $delta approx 11^{circ}$, forming a canted antiferromagnetic structure without uniform magnetization consistent with magnetic space group $C[B]c$. Our results establish that type-II antiferromagnetism is not the zero-temperature magnetic ground state of CuMnSb as may be expected of the face-centered cubic Mn sublattice.

قيم البحث

اقرأ أيضاً

We report on the new compound UCu${}_9$Sn${}_4$ which crystallizes in the tetragonal structure emph{I}4/emph{mcm} with lattice parameters $a = 8.600{rmAA}$ and $c = 12.359{rmAA}$. This compound is isotyp to the ferromagnetic systems RECu${}_9$Sn${}_4 $ (RE = Ce, Pr, Nd) with Curie temperatures $T{}rm_C$ = 5.5 K, 10.5 K and 15 K, respectively. UCu${}_9$Sn${}_4$ exhibits an uncommon magnetic behavior resulting in three different electronic phase transitions. Below 105 K the sample undergoes a valence transition accompanied by an entropy change of 0.5 Rln2. At 32 K a small hump in the specific heat and a flattening out in the susceptibility curve probably indicate the onset of helical spin order. To lower temperatures a second transition to antiferromagnetic ordering occurs which develops a small ferromagnetic contribution on lowering the temperature further. These results are strongly hinting for canted antiferromagnetism in UCu${}_9$Sn${}_4$.
We report the synthesis and physical properties studies of quais-1D iron chalcogenide $rm BaFe_2Se_4$ which shares the $rm FeSe_4$ tetrahedra building motif commonly seen in the iron chalcogenide superconductors. A high-quality polycrystalline sample was achieved by solid-state reaction method and characterized by X-ray diffraction, electrical resistivity, magnetic susceptibility and neutron diffraction measurements. $rm BaFe_2Se_4$ is a narrow gap semiconductor that magnetically orders at $sim$ 310 K. Both neutron powder diffraction results and isothermal M-H loops suggest a canted antiferromagnetic structure where Fe sublattice are antiferromagnetically ordered along the c-axis quasi-1D chain direction, resulting in a net ferromagnetic moment in the perpendicular direction along the a-axis with tilted angle of 18.7$^circ$ towards the b-axis.
Taking the pseudobinary C15 Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic to antiferromagnetic phase transition, we present interesting thermomagnetic history effects in magnetotransport as well as mag netisation measurements across this phase transition. A comparison is made with history effects observed across the ferromagnetic to antiferromagnetic transition in R$_{0.5}$Sr$_{0.5}$MnO$_3$ crystals.
Compounds based on the Fe2P structure have continued to attract interest because of the interplay between itinerant and localized magnetism in a non-centrosymmetric crystal structure, and because of the recent developments of these materials for magn etocaloric applications. Here we report the growth and characterization of mm size single crystals of FeMnP0.8Si0.2. Single crystal x-ray diffraction, magnetization, resistivity, Hall and heat capacity data are reported. Surprisingly, the crystals exhibit itinerant antiferromagnetic order below 158 K with no hint of ferromagnetic behavior in the magnetization curves and with the spins ordered primarily in the ab plane. The room temperature resistivity is close to the Ioffe-Regel limit for a metal. Single crystal x-ray diffraction indicates a strong preference for Mn to occupy the larger pyramidal 3g site. The cation site preference in the as-grown crystals and the antiferromagnetism are not changed after high temperature anneals and a rapid quench to room temperature.
Single crystal neutron diffraction, inelastic neutron scattering, bulk magnetization measurements, and first-principles calculations are used to investigate the magnetic properties of the honeycomb lattice $rm Tb_2Ir_3Ga_9$. While the $Rln2$ magnetic contribution to the low-temperature entropy indicates a $rm J_{eff}=1/2$ moment for the lowest-energy crystal-field doublet, the Tb$^{3+}$ ions form a canted antiferromagnetic structure below 12.5 K. Due to the Dzyalloshinskii-Moriya interactions, the Tb moments in the $ab$ plane are slightly canted towards $b$ by $6^circ$ with a canted moment of 1.22 $mu_{rm B} $ per formula unit. A minimal $xxz$ spin Hamiltonian is used to simultaneously fit the spin-wave frequencies along the high symmetry directions and the field dependence of the magnetization along the three crystallographic axes. Long-range magnetic interactions for both in-plane and out-of-plane couplings up to the second nearest neighbors are needed to account for the observed static and dynamic properties. The $z$ component of the exchange interactions between Tb moments are larger than the $x$ and $y$ components. This compound also exhibits bond-dependent exchange with negligible nearest exchange coupling between moments parallel and perpendicular to the 4$f$ orbitals. Despite the $J_{{rm eff}}=1/2$ moments, the spin Hamiltonian is denominated by a large in-plane anisotropy $K_z sim -1$ meV. DFT calculations confirm the antiferromagnetic ground state and the substantial inter-plane coupling at larger Tb-Tb distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا