ﻻ يوجد ملخص باللغة العربية
Genuine multipartite entanglement has been found in some spin chain systems. However, genuine multipartite nonlocality, which is much rarer than genuine multipartite entanglement, has never been found in any spin chain system. Here we present genuine multipartite nonlocality in a spin chain system. After introducing the definition of genuine multipartite nonlocality and a multipartite Bell-type inequality, we construct a group of joint measurements for the inequality in a one-dimensional ferromagnetic $N$-qubit chain with nearest-neighbor XXZ interaction, and many violations to the inequality have been found. The violations do indicate that genuine multipartite nonlocality exists in this ferromagnetic spin-1/2 chain system. Last but not least, we also calculate genuine multipartite entanglement concurrence in the same spin chain to demonstrate the difference and relationship between genuine multipartite nonlocality and genuine multipartite entanglement.
We investigate genuine multipartite nonlocality of pure permutationally invariant multimode Gaussian states of continuous variable systems, as detected by the violation of Svetlichny inequality. We identify the phase space settings leading to the lar
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh
The nonlocal correlations of multipartite entangled states can be reproduced by a classical model if sufficiently many parties join together or if sufficiently many parties broadcast their measurement inputs. The maximal number m of groups and the mi
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipart