ﻻ يوجد ملخص باللغة العربية
We study the behavior of the pseudogap in overdoped Bi$_{2}$Sr$_2$CaCu$_2$O$_{8+d}$ by electronic Raman scattering (ERS) and angle-resolved photoemission spectroscopy (ARPES) on the same single crystals. Using both techniques we find that, unlike the superconducting gap, the pseudogap related to the anti-bonding band vanishes above the critical doping p$_c$ = 0.22. Concomitantly, we show from ARPES measurements that the Fermi surface of the anti-bonding band is hole-like below pc and becomes electron-like above p$_c$. This reveals that the appearance of the pseudogap depends on the Fermi surface topology in Bi$_{2}$Sr$_2$CaCu$_2$O$_{8+d}$ , and more generally, puts strong constraint on theories of the pseudogap phase.
The effects of structural supermodulation with the period $lambda approx26$ AA along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the int
By combining surprising new results from a full polarization analysis of nodal angle-resolved photoemission data from pristine and modulation-free Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ with structural information from LEED and {it ab initio} one-step pho
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma
A Fermi arc is a disconnected segment of a Fermi surface observed in the pseudogap phase of cuprate superconductors. This simple description belies the fundamental inconsistency in the physics of Fermi arcs, specifically that such segments violate th
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup