ﻻ يوجد ملخص باللغة العربية
We estimate the $3$-colour bipartite Ramsey number for balanced bipartite graphs $H$ with small bandwidth and bounded maximum degree. More precisely, we show that the minimum value of $N$ such that in any $3$-edge colouring of $K_{N,N}$ there is a monochromatic copy of $H$ is at most $big(3/2+o(1)big)|V(H)|$. In particular, we determine asymptotically the $3$-colour bipartite Ramsey number for balanced grid graphs.
We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine asymptotically the two col
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.
Given any graph $H$, a graph $G$ is said to be $q$-Ramsey for $H$ if every coloring of the edges of $G$ with $q$ colors yields a monochromatic subgraph isomorphic to $H$. Further, such a graph $G$ is said to be minimal $q$-Ramsey for $H$ if additiona
In this paper, we classify the connected non-bipartite integral graphs with spectral radius three.
The size-Ramsey number of a graph $F$ is the smallest number of edges in a graph $G$ with the Ramsey property for $F$, that is, with the property that any 2-colouring of the edges of $G$ contains a monochromatic copy of $F$. We prove that the size-Ra