ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB120729A: external shock origin for both the prompt gamma-ray emission and afterglow

75   0   0.0 ( 0 )
 نشر من قبل Xianggao Wang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Li-Ye Huang




اسأل ChatGPT حول البحث

Gamma-ray burst (GRB) 120729A was detected by Swift/BAT and Fermi/GBM, and then rapidly observed by Swift/XRT, Swift/UVOT, and ground-based telescopes. It had a single long and smooth gamma-ray emission pulse, which extends continuously to the X-rays. We report Lick/KAIT observations of the source, and make temporal and spectral joint fits of the multiwavelength light curves of GRB 120729A. It exhibits achromatic light-curve behavior, consistent with the predictions of the external shock model. The light curves are decomposed into four typical phases: onset bump (Phase I), normal decay (Phase II), shallow decay (Phase III), and post-jet break (Phase IV). The spectral energy distribution (SED) evolves from prompt gamma-ray emission to the afterglow with photon index from $Gamma_{rm gamma}=1.36$ to $Gamma approx 1.75$. There is no obvious evolution of the SED during the afterglow. The multiwavelength light curves from gamma-ray to optical can be well modeled with an external shock by considering energy injection, and a time-dependent microphysics model with $epsilon_Bpropto t^{alpha_B}$ for the emission at early times, $T < T_{rm 0} + 157$~s. Therefore, we conclude that both the prompt gamma-ray emission and afterglow of GRB 120729A have the same external shock physical origin. Our model indicates that the $epsilon_B$ evolution can be described as a broken power-law function with $alpha_{rm B,1} = 0.18 pm 0.04$ and $alpha_{rm B,2} = 0.84 pm 0.04$. We also systematically investigate single-pulse GRBs in the Swift era, finding that only a small fraction of GRBs (GRBs 120729A, 051111, and 070318) are likely to originate from an external shock for both the prompt gamma-ray emission and afterglow.

قيم البحث

اقرأ أيضاً

The external forward shock (EFS) models have been the standard paradigm to interpret the broad-band afterglow data of gamma-ray bursts (GRBs). One prediction of the models is that some afterglow temporal breaks at different energy bands should be ach romatic. Observations in the Swift era have revealed chromatic afterglow behaviors at least in some GRBs, casting doubts on the EFS origin of GRB afterglows. In this paper, we perform a systematic study to address the question: how bad/good are the external forward shock models? Our sample includes 85 GRBs well-monitored X-ray and optical lightcurves. Based on how well the data abide by the EFS models, we categorize them as: Gold sample: (Grade I and II) include 45/85 GRBs. They show evidence of, or are consistent with having, an achromatic break. The temporal/spectral behaviors in each afterglow segment are consistent with the predictions (closure relations) of the EFS models. Silver sample: (Grade III and IV) include 37/85 GRBs. They are also consistent with having an achromatic break, even though one or more afterglow segments do not comply with the closure relations. Bad sample: (Grade V), 3/85 shows direct evidence of chromatic behaviors, suggesting that the EFS models are inconsistent with the data. These are included in the Bad sample. We further perform statistical analyses of various observational properties ($alpha$, $beta$, $t_b$ and model parameters (energy injection index q, p, $theta_j$, $eta_gamma$, etc) of the GRBs in the Gold Sample, and derive constraints on the magnetization parameter $epsilon_B$ in the EFS. Overall, we conclude that the simplest EFS models can account for the multi-wavelength afterglow data of at least half of the GRBs. When more advanced modeling (e.g., long-lasting reverse shock, structured jets) is invoked, up to $>90 %$ of the afterglows may be interpreted within the framework of the ESF models.
The early X-ray afterglow of gamma-ray bursts revealed by Swift carried many surprises. We focus in this paper on the plateau phase whose origin remains highly debated. We confront several newly discovered correlations between prompt and afterglow qu antities (isotropic emitted energy in gamma-rays, luminosity and duration of the plateau) to several models proposed for the origin of plateaus in order to check if they can account for these observed correlations. We first show that the scenario of plateau formation by energy injection into the forward shock leads to an efficiency crisis for the prompt phase and therefore study two possible alternatives: the first one still takes place within the framework of the standard forward shock model but allows for a variation of the microphysics parameters to reduce the radiative efficiency at early times; in the second scenario the early afterglow results from a long-lived reverse shock. Its shape then depends on the distribution of energy as a function of Lorentz factor in the ejecta. In both cases, we first present simple analytical estimates of the plateau luminosity and duration and then compute detailed light curves. In the two considered scenarios we find that plateaus following the observed correlations can be obtained under the condition that specific additional ingredients are included. In the forward shock scenario, the preferred model supposes a wind external medium and a microphysics parameter epsilon_e that first varies as n^{- u} (n being the external density), with u~1 to get a flat plateau, before staying constant below a critical density n_0. To produce a plateau in the reverse shock scenario the ejecta must contain a tail of low Lorentz factor with a peak of energy deposition at Gamma >~ 10.
The complex multiwavelength emission of GRB afterglow 130427A (monitored in the radio up to 10 days, in the optical and X-ray until 50 days, and at GeV energies until 1 day) can be accounted for by a hybrid reverse-forward shock synchrotron model, wi th inverse-Compton emerging only above a few GeV. The high ratio of the early optical to late radio flux requires that the ambient medium is a wind and that the forward-shock synchrotron spectrum peaks in the optical at about 10 ks. The latter has two consequences: the wind must be very tenuous and the optical emission before 10 ks must arise from the reverse-shock, as suggested also by the bright optical flash that Raptor has monitored during the prompt emission phase (<100 s). The VLA radio emission is from the reverse-shock, the Swift X-ray emission is mostly from the forward-shock, but the both shocks give comparable contributions to the Fermi GeV emission. The weak wind implies a large blast-wave radius (8 t_{day}^{1/2} pc), which requires a very tenuous circumstellar medium, suggesting that the massive stellar progenitor of GRB 130427A resided in a super-bubble.
Gamma-ray bursts (GRBs) were first detected thanks to their prompt emission, which was the only information available for decades. In 2010, while the high-energy prompt emission remains the main tool for the detection and the first localization of GR B sources, our understanding of this crucial phase of GRBs has made great progress. We discuss some recent advances in this field, like the occasional detection of the prompt emission at all wavelengths, from optical to GeV; the existence of sub-luminous GRBs; the attempts to standardize GRBs; and the possible detection of polarization in two very bright GRBs. Despite these advances, tantalizing observational and theoretical challenges still exist, concerning the detection of the faintest GRBs, the panchromatic observation of GRBs from their very beginning, the origin of the prompt emission, or the understanding of the physics at work during this phase. Significant progress on this last topic is expected with SVOM thanks to the observation of dozens of GRBs from optical to MeV during the burst itself, and the measure of the redshift for the majority of them. SVOM will also change our view of the prompt GRB phase in another way. Within a few years, the sensitivity of sky surveys at optical and radio frequencies, and outside the electromagnetic domain in gravitational waves or neutrinos, will allow them to detect several new types of transient signals, and SVOM will be uniquely suited to identify which of these transients are associated with GRBs. This radically novel look at GRBs may elucidate the complex physics producing these bright flashes.
GRB spectra appear non-thermal, but recent observations of a few bursts with Fermi GBM have confirmed previous indications from BATSE of the presence of an underlying thermal component. Photospheric emission is indeed expected when the relativistic o utflow emerging from the central engine becomes transparent to its own radiation, with a quasi-blackbody spectrum in absence of additional sub-photospheric dissipation. However, its intensity strongly depends on the acceleration mechanism - thermal or magnetic - of the flow. We aim to compute the thermal and non-thermal emissions produced by an outflow with a variable Lorentz factor, where the power injected at the origin is partially thermal (fraction epsilon_th) and partially magnetic (fraction 1-epsilon_th). The thermal emission is produced at the photosphere, and the non-thermal emission in the optically thin regime. Apart from the value of epsilon_th, we want to test how the other model parameters affect the observed ratio of the thermal to non-thermal emission. If the non-thermal emission is made by internal shocks, we self-consistently obtained the light curves and spectra of the thermal and non-thermal components for any distribution of the Lorentz factor in the flow. If the non-thermal emission results from magnetic reconnection we were unable to produce a light curve and could only compare the respective non-thermal and thermal spectra. In the different considered cases, we varied the model parameters to see when the thermal component in the light curve and/or spectrum is likely to show up or, on the contrary, to be hidden. We finally compared our results to the proposed evidence for the presence of a thermal component in GRB spectra. Focussing on GRB 090902B and GRB 10072B, we showed how these observations can be used to constrain the nature and acceleration mechanism of GRB outflows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا