ﻻ يوجد ملخص باللغة العربية
We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived from three-dimensional Prandtl-Reuss plasticity. We extend the previous existence result by introducing non-zero external forces in the model, and we discuss the regularity of the solutions thus obtained. In particular, we show that the first derivatives with respect to space of the stress tensor are locally square integrable.
This paper concerns a time-independent thermoelectric model with two different boundary conditions. The model is a nonlinear coupled system of the Maxwell equations and an elliptic equation. By analyzing carefully the nonlinear structure of the equat
By studying the linearization of contour dynamics equation and using implicit function theorem, we prove the existence of co-rotating and travelling global solutions for the gSQG equation, which extends the result of Hmidi and Mateu cite{HM} to $alph
This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $Phi$-Laplacian operator. The proof of existence is based on a variant of t
We investigate the existence and the boundary regularity of source-type self-similar solutions to the thin-film equation $h_t=-(h^nh_{zzz})_z+(h^{n+3})_{zz},$ $ t>0,, zin R;, h(0,z)= M delta$ where $nin (3/2,3),, M > 0$ and $delta$ is the Dirac mass
This paper analyses the well-posedness and properties of the extended play-type model which was proposed in [van Duijn & Mitra (2018)] to incorporate hysteresis in unsaturated flow through porous media. The model, when regularised, reduces to a nonli