ترغب بنشر مسار تعليمي؟ اضغط هنا

Incremental Verification of Parametric and Reconfigurable Markov Chains

80   0   0.0 ( 0 )
 نشر من قبل Paul Gainer
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The analysis of parametrised systems is a growing field in verification, but the analysis of parametrised probabilistic systems is still in its infancy. This is partly because it is much harder: while there are beautiful cut-off results for non-stochastic systems that allow to focus only on small instances, there is little hope that such approaches extend to the quantitative analysis of probabilistic systems, as the probabilities depend on the size of a system. The unicorn would be an automatic transformation of a parametrised system into a formula, which allows to plot, say, the likelihood to reach a goal or the expected costs to do so, against the parameters of a system. While such analysis exists for narrow classes of systems, such as waiting queues, we aim both lower---stepwise exploring the parameter space---and higher---considering general systems. The novelty is to heavily exploit the similarity between instances of parametrised systems. When the parameter grows, the system for the smaller parameter is, broadly speaking, present in the larger system. We use this observation to guide the elegant state-elimination method for parametric Markov chains in such a way, that the model transformations will start with those parts of the system that are stable under increasing the parameter. We argue that this can lead to a very cheap iterative way to analyse parametric systems, show how this approach extends to reconfigurable systems, and demonstrate on two benchmarks that this approach scales.

قيم البحث

اقرأ أيضاً

Parametric Markov chains occur quite naturally in various applications: they can be used for a conservative analysis of probabilistic systems (no matter how the parameter is chosen, the system works to specification); they can be used to find optimal settings for a parameter; they can be used to visualise the influence of system parameters; and they can be used to make it easy to adjust the analysis for the case that parameters change. Unfortunately, these advancements come at a cost: parametric model checking is---or rather was---often slow. To make the analysis of parametric Markov models scale, we need three ingredients: clever algorithms, the right data structure, and good engineering. Clever algorithms are often the main (or sole) selling point; and we face the trouble that this paper focuses on -- the latter ingredients to efficient model checking. Consequently, our easiest claim to fame is in the speed-up we have often realised when comparing to the state of the art.
141 - Anicet Bart 2017
Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with p arametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results.
Parametric Markov chains have been introduced as a model for families of stochastic systems that rely on the same graph structure, but differ in the concrete transition probabilities. The latter are specified by polynomial constraints for the paramet ers. Among the tasks typically addressed in the analysis of parametric Markov chains are (1) the computation of closed-form solutions for reachabilty probabilities and other quantitative measures and (2) finding symbolic representations of the set of parameter valuations for which a given temporal logical formula holds as well as (3) the decision variant of (2) that asks whether there exists a parameter valuation where a temporal logical formula holds. Our contribution to (1) is to show that existing implementations for computing rational functions for reachability probabilities or expected costs in parametric Markov chains can be improved by using fraction-free Gaussian elimination, a long-known technique for linear equation systems with parametric coefficients. Our contribution to (2) and (3) is a complexity-theoretic discussion of the model checking problem for parametric Markov chains and probabilistic computation tree logic (PCTL) formulas. We present an exponential-time algorithm for (2) and a PSPACE upper bound for (3). Moreover, we identify fragments of PCTL and subclasses of parametric Markov chains where (1) and (3) are solvable in polynomial time and establish NP-hardness for other PCTL fragments.
This paper considers large families of Markov chains (MCs) that are defined over a set of parameters with finite discrete domains. Such families occur in software product lines, planning under partial observability, and sketching of probabilistic pro grams. Simple questions, like `does at least one family member satisfy a property?, are NP-hard. We tackle two problems: distinguish family members that satisfy a given quantitative property from those that do not, and determine a family member that satisfies the property optimally, i.e., with the highest probability or reward. We show that combining two well-known techniques, MDP model checking and abstraction refinement, mitigates the computational complexity. Experiments on a broad set of benchmarks show that in many situations, our approach is able to handle families of millions of MCs, providing superior scalability compared to existing solutions.
Implementations of artificial neural networks (ANNs) might lead to failures, which are hardly predicted in the design phase since ANNs are highly parallel and their parameters are barely interpretable. Here, we develop and evaluate a novel symbolic v erification framework using incremental bounded model checking (BMC), satisfiability modulo theories (SMT), and invariant inference, to obtain adversarial cases and validate coverage methods in a multi-layer perceptron (MLP). We exploit incremental BMC based on interval analysis to compute boundaries from a neurons input. Then, the latter are propagated to effectively find a neurons output since it is the input of the next one. This paper describes the first bit-precise symbolic verification framework to reason over actual implementations of ANNs in CUDA, based on invariant inference, therefore providing further guarantees about finite-precision arithmetic and its rounding errors, which are routinely ignored in the existing literature. We have implemented the proposed approach on top of the efficient SMT-based bounded model checker (ESBMC), and its experimental results show that it can successfully verify safety properties, in actual implementations of ANNs, and generate real adversarial cases in MLPs. Our approach was able to verify and produce adversarial examples for 85.8% of 21 test cases considering different input images, and 100% of the properties related to covering methods. Although our verification time is higher than existing approaches, our methodology can consider fixed-point implementation aspects that are disregarded by the state-of-the-art verification methodologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا