ﻻ يوجد ملخص باللغة العربية
An arbitrarily dense discretisation of the Bloch sphere of complex Hilbert states is constructed, where points correspond to bit strings of fixed finite length. Number-theoretic properties of trigonometric functions (not part of the quantum-theoretic canon) are used to show that this constructive discretised representation incorporates many of the defining characteristics of quantum systems: completementarity, uncertainty relationships and (with a simple Cartesian product of discretised spheres) entanglement. Unlike Meyers earlier discretisation of the Bloch Sphere, there are no orthonormal triples, hence the Kocken-Specker theorem is not nullified. A physical interpretation of points on the discretised Bloch sphere is given in terms of ensembles of trajectories on a dynamically invariant fractal set in state space, where states of physical reality correspond to points on the invariant set. This deterministic construction provides a new way to understand the violation of the Bell inequality without violating statistical independence or factorisation, where these conditions are defined solely from states on the invariant set. In this finite representation there is an upper limit to the number of qubits that can be entangled, a property with potential experimental consequences.
Bells theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between
Bells theorem is typically understood as the proof that quantum theory is incompatible with local hidden variable models. More generally, we can see the violation of a Bell inequality as witnessing the impossibility of explaining quantum correlations
Randomness is a fundamental feature in nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathemati
(A) Bells theorem rests on a conjunction of three assumptions: realism, locality and ``free will. A discussion of these assumptions will be presented. It will be also shown that, if one adds to the assumptions the principle or rotational symmetry o