ترغب بنشر مسار تعليمي؟ اضغط هنا

Cancelable Indexing Based on Low-rank Approximation of Correlation-invariant Random Filtering for Fast and Secure Biometric Identification

311   0   0.0 ( 0 )
 نشر من قبل Takao Murakami
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A cancelable biometric scheme called correlation-invariant random filtering (CIRF) is known as a promising template protection scheme. This scheme transforms a biometric feature represented as an image via the 2D number theoretic transform (NTT) and random filtering. CIRF has perfect secrecy in that the transformed feature leaks no information about the original feature. However, CIRF cannot be applied to large-scale biometric identification, since the 2D inverse NTT in the matching phase requires high computational time. Furthermore, existing biometric indexing schemes cannot be used in conjunction with template protection schemes to speed up biometric identification, since a biometric index leaks some information about the original feature. In this paper, we propose a novel indexing scheme called cancelable indexing to speed up CIRF without losing its security properties. The proposed scheme is based on fast computation of CIRF via low-rank approximation of biometric images and via a minimum spanning tree representation of low-rank matrices in the Fourier domain. We prove that the transformed index leaks no information about the original index and the original biometric feature (i.e., perfect secrecy), and thoroughly discuss the security of the proposed scheme. We also demonstrate that it significantly reduces the one-to-many matching time using a finger-vein dataset that includes six fingers from 505 subjects.



قيم البحث

اقرأ أيضاً

For the high dimensional data representation, nonnegative tensor ring (NTR) decomposition equipped with manifold learning has become a promising model to exploit the multi-dimensional structure and extract the feature from tensor data. However, the e xisting methods such as graph regularized tensor ring decomposition (GNTR) only models the pair-wise similarities of objects. For tensor data with complex manifold structure, the graph can not exactly construct similarity relationships. In this paper, in order to effectively utilize the higher-dimensional and complicated similarities among objects, we introduce hypergraph to the framework of NTR to further enhance the feature extraction, upon which a hypergraph regularized nonnegative tensor ring decomposition (HGNTR) method is developed. To reduce the computational complexity and suppress the noise, we apply the low-rank approximation trick to accelerate HGNTR (called LraHGNTR). Our experimental results show that compared with other state-of-the-art algorithms, the proposed HGNTR and LraHGNTR can achieve higher performance in clustering tasks, in addition, LraHGNTR can greatly reduce running time without decreasing accuracy.
With the explosion of digital data in recent years, continuously learning new tasks from a stream of data without forgetting previously acquired knowledge has become increasingly important. In this paper, we propose a new continual learning (CL) sett ing, namely ``continual representation learning, which focuses on learning better representation in a continuous way. We also provide two large-scale multi-step benchmarks for biometric identification, where the visual appearance of different classes are highly relevant. In contrast to requiring the model to recognize more learned classes, we aim to learn feature representation that can be better generalized to not only previously unseen images but also unseen classes/identities. For the new setting, we propose a novel approach that performs the knowledge distillation over a large number of identities by applying the neighbourhood selection and consistency relaxation strategies to improve scalability and flexibility of the continual learning model. We demonstrate that existing CL methods can improve the representation in the new setting, and our method achieves better results than the competitors.
Covering the face and all body parts, sometimes the only evidence to identify a person is their hand geometry, and not the whole hand- only two fingers (the index and the middle fingers) while showing the victory sign, as seen in many terrorists vide os. This paper investigates for the first time a new way to identify persons, particularly (terrorists) from their victory sign. We have created a new database in this regard using a mobile phone camera, imaging the victory signs of 50 different persons over two sessions. Simple measurements for the fingers, in addition to the Hu Moments for the areas of the fingers were used to extract the geometric features of the shown part of the hand shown after segmentation. The experimental results using the KNN classifier were encouraging for most of the recorded persons; with about 40% to 93% total identification accuracy, depending on the features, distance metric and K used.
This paper proposes a framework for group membership protocols preventing the curious but honest server from reconstructing the enrolled biometric signatures and inferring the identity of querying clients. This framework learns the embedding paramete rs, group representations and assignments simultaneously. Experiments show the trade-off between security/privacy and verification/identification performances.
Polarimetric synthetic aperture radar (PolSAR) image classification has been investigated vigorously in various remote sensing applications. However, it is still a challenging task nowadays. One significant barrier lies in the speckle effect embedded in the PolSAR imaging process, which greatly degrades the quality of the images and further complicates the classification. To this end, we present a novel PolSAR image classification method, which removes speckle noise via low-rank (LR) feature extraction and enforces smoothness priors via Markov random field (MRF). Specifically, we employ the mixture of Gaussian-based robust LR matrix factorization to simultaneously extract discriminative features and remove complex noises. Then, a classification map is obtained by applying convolutional neural network with data augmentation on the extracted features, where local consistency is implicitly involved, and the insufficient label issue is alleviated. Finally, we refine the classification map by MRF to enforce contextual smoothness. We conduct experiments on two benchmark PolSAR datasets. Experimental results indicate that the proposed method achieves promising classification performance and preferable spatial consistency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا