ﻻ يوجد ملخص باللغة العربية
Affine systems reachability is the basis of many verification methods. With further computation, methods exist to reason about richer models with inputs, nonlinear differential equations, and hybrid dynamics. As such, the scalability of affine systems verification is a prerequisite to scalable analysis for more complex systems. In this paper, we improve the scalability of affine systems verification, in terms of the number of dimensions (variables) in the system. The reachable states of affine systems can be written in terms of the matrix exponential, and safety checking can be performed at specific time steps with linear programming. Unfortunately, for large systems with many state variables, this direct approach requires an intractable amount of memory while using an intractable amount of computation time. We overcome these challenges by combining several methods that leverage common problem structure. Memory is reduced by exploiting initial states that are not full-dimensional and safety properties (outputs) over a few linear projections of the state variables. Computation time is saved by using numerical simulations to compute only projections of the matrix exponential relevant for the verification problem. Since large systems often have sparse dynamics, we use Krylov-subspace simulation approaches based on the Arnoldi or Lanczos iterations. Our method produces accurate counter-examples when properties are violated and, in the extreme case with sufficient problem structure, can analyze a system with one billion real-valued state variables.
This paper focuses on finding reinforcement learning policies for control systems with hard state and action constraints. Despite its success in many domains, reinforcement learning is challenging to apply to problems with hard constraints, especiall
In this paper, we propose an incremental abstraction method for dynamically over-approximating nonlinear systems in a bounded domain by solving a sequence of linear programs, resulting in a sequence of affine upper and lower hyperplanes with expandin
Cyber-Physical Systems (CPS) pose new challenges to verification and validation that go beyond the proof of functional correctness based on high-level models. Particular challenges are, in particular for formal methods, its heterogeneity and scalabil
The security in information-flow has become a major concern for cyber-physical systems (CPSs). In this work, we focus on the analysis of an information-flow security property, called opacity. Opacity characterizes the plausible deniability of a syste
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Du