ﻻ يوجد ملخص باللغة العربية
We propose wideband bandpass filters based on multipole resonances of spoof localized surface plasmons (SLSPs). The resonance characteristics and geometric tunability of SLSPs are investigated under microstrip excitations. Strong coupling with interlayer microstrip lines is proposed to join discrete multipole resonances into a continuous and flat passband. The SLSP filters exhibit wide passbands in compact sizes and well-balanced shapes, while holding satisfactory spurious rejection bands, group delays, and geometric tunability. This work exposes the SLSPs application potential in filters as novel resonators.
Advances in graphene plasmonics offer numerous opportunities for enabling the design and manufacture of a variety of nanoelectronics and other exciting optical devices. However, due to the limitation of material properties, its operating frequency ca
Manipulation of spoof surface plasmons (SSPs) has recently intrigued enormous interest due to the capability of guiding waves with subwavelength footsteps. However, most of the previous studies, manifested for a single functionality, are not suitable
We demonstrate advanced integrated photonic filters in silicon-on-insulator (SOI) nanowires implemented by cascaded Sagnac loop reflector (CSLR) resonators. We investigate mode splitting in these standing-wave (SW) resonators and demonstrate its use
In this paper, a wideband and low-scattering metasurface in terahertz (THz) is introduced. The proposed coding metasurface is composed of four different graphene square patches in one layer, which has a distinct bias voltage. By optimizing the chemic
This letter presents a dumbbell-shaped defected ground resonator and its application in the design of differential filters. The operation principle of the dumbbell-shaped resonator (DSR) coupled to differential microstrip lines is studied through a c