ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB: Greedy Routing Protocol with Backtracking for Mobile Ad Hoc Network (Extended Version)

122   0   0.0 ( 0 )
 نشر من قبل Dakshnamoorthy Manivannan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Routing protocols for Mobile Ad Hoc Networks (MANETs) have been extensively studied for more than fifteen years. Position-based routing protocols route packets towards the destination using greedy forwarding (i.e., an intermediate node forwards packets to a neighbor that is closer to the destination than itself). Different position-based protocols use different strategies to pick the neighbor to forward the packet. If a node has no neighbor that is closer to the destination than itself, greedy forwarding fails. In this case, we say there is void (no neighboring nodes) in the direction of the destination. Different position-based routing protocols use different methods for dealing with voids. In this paper, we use a simple backtracking technique to deal with voids and design a position-based routing protocol called Greedy Routing Protocol with Backtracking (GRB). We compare the performance of our protocol with the well known Greedy Perimeter Stateless Routing (GPSR) routing and the Ad-Hoc On-demand Distance Vector (AODV) routing protocol as well as the Dynamic Source Routing (DSR) protocol. Our protocol needs much less routing-control packets than those needed by DSR, AODV, and GPSR. Simulation results also show that our protocol has a higher packet-delivery ratio, lower end-to-end delay, and less hop count on average than AODV.

قيم البحث

اقرأ أيضاً

105 - A. Sabari , K. Duraiswamy , 2009
Multicasting is effective when its group members are sparse and the speed is low. On the other hand, broadcasting is effective when the group members dense and the speed are high. Since mobile ad hoc networks are highly dynamic in nature, either of t he above two strategies can be adopted at different scenarios. In this paper, we propose an ant agent based adaptive, multicast protocol that exploits group members desire to simplify multicast routing and invoke broadcast operations in appropriate localized regimes. By reducing the number of group members that participate in the construction of the multicast structure and by providing robustness to mobility by performing broadcasts in densely clustered local regions, the proposed protocol achieves packet delivery statistics that are comparable to that with a pure multicast protocol but with significantly lower overheads. By our simulation results, we show that our proposed protocol achieves increased Packet Delivery Fraction (PDF) with reduced overhead and routing load.
This paper reports experimental results on self-organizing wireless networks carried by small flying robots. Flying ad hoc networks (FANETs) composed of small unmanned aerial vehicles (UAVs) are flexible, inexpensive and fast to deploy. This makes th em a very attractive technology for many civilian and military applications. Due to the high mobility of the nodes, maintaining a communication link between the UAVs is a challenging task. The topology of these networks is more dynamic than that of typical mobile ad hoc networks (MANETs) and of typical vehicle ad hoc networks (VANETs). As a consequence, the existing routing protocols designed for MANETs partly fail in tracking network topology changes. In this work, we compare two different routing algorithms for ad hoc networks: optimized link-state routing (OLSR), and predictive-OLSR (P-OLSR). The latter is an OLSR extension that we designed for FANETs; it takes advantage of the GPS information available on board. To the best of our knowledge, P-OLSR is currently the only FANET-specific routing technique that has an available Linux implementation. We present results obtained by both Media Access Control (MAC) layer emulations and real-world experiments. In the experiments, we used a testbed composed of two autonomous fixed-wing UAVs and a node on the ground. Our experiments evaluate the link performance and the communication range, as well as the routing performance. Our emulation and experimental results show that P-OLSR significantly outperforms OLSR in routing in the presence of frequent network topology changes.
170 - Song Yean Cho 2008
Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes of the network. We use network coding as a loss tolerant, energy-efficient, method for broadcast. Our emphasis is on mobile networks. Our contribution is the proposal of DRAGONCAST, a protocol to perform network coding in such a dynamically evolving environment. It is based on three building blocks: a method to permit real-time decoding of network coding, a method to adjust the network coding transmission rates, and a method for ensuring the termination of the broadcast. The performance and behavior of the method are explored experimentally by simulations; they illustrate the excellent performance of the protocol.
In this paper, we propose and evaluate a distributed protocol to manage trust diffusion in ad hoc networks. In this protocol, each node i maintains a trust value about an other node j which is computed both as a result of the exchanges with node j it self and as a function of the opinion that other nodes have about j. These two aspects are respectively weighted by a trust index that measures the trust quality the node has in its own experiences and by a trust index representing the trust the node has in the opinions of the other nodes. Simulations have been realized to validate the robustness of this protocol against three kinds of attacks: simple coalitions, Trojan attacks and detonator attacks.
Secure communication between two nodes in a network depends on reliable key management systems that generate and distribute keys between communicating nodes and a secure routing protocol that establishes a route between them. But due to lack of centr al server and infrastructure in Mobile Ad hoc Networks (MANETs), this is major problem to manage the keys in the network. Dynamically changes in networks topology causes weak trust relationship among the nodes in the network. In MANETs a mobile node operates as not only end terminal but also as an intermediate router. Therefore, a multi-hop scenario occurs for communication in MANETs; where there may be one or more malicious nodes in between source and destination. A routing protocol is said to be secure that detects the detrimental effects of malicious node(s in the path from source to destination). In this paper, we proposed a key management scheme and a secure routing protocol that secures on demand routing protocol such as DSR and AODV. We assume that MANETs is divided into groups having a group leader in each group. Group leader has responsibility of key management in its group. Proposed key management scheme is a decentralized scheme that does not require any Trusted Third Party (TTP) for key management. In proposed key management system, both a new node and group leader authenticates each other mutually before joining the network. While proposed secure routing protocol allows both communicating parties as well as intermediate nodes to authenticate other nodes and maintains message integrity
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا