ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillations of cometary tails: a vortex shedding phenomenon?

54   0   0.0 ( 0 )
 نشر من قبل Giuseppe Nistic\\`o
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. During their journey to perihelion, comets may appear in the field-of-view of space-borne optical instruments, showing in some cases a nicely developed plasma tail extending from their coma and exhibiting an oscillatory behaviour. Aims. The oscillations of cometary tails may be explained in terms of vortex shedding because of the interaction of the comet with the solar wind streams. Therefore, it is possible to exploit these oscillations in order to infer the value of the Strouhal number $St$, which quantifies the vortex shedding phenomenon, and the physical properties of the local medium. Methods. We used the Heliospheric Imager (HI) data of the Solar TErrestrial Relations Observatory (STEREO) mission to study the oscillations of the tails of the comets 2P/Encke and C/2012 S1 (ISON) during their perihelion in Nov 2013, determining the Strouhal numbers from the estimates of the halo size, the relative speed of the solar wind flow and the period of the oscillations. Results. We found that the estimated Strouhal numbers are very small, and the typical value of $Stsim0.2$ would be extrapolated for size of the halo larger than $sim10^6$ km. Conclusions. Despite the vortex shedding phenomenon has not been unambiguously revealed, the findings suggest that some MHD instability process is responsible for the observed behaviour of cometary tails, which can be exploited for probing the physical conditions of the near-Sun region.

قيم البحث

اقرأ أيضاً

The present article represents part of the PhD. dissertation by C. Josserand. We discuss the nucleation of quantized vortices in the nonlinear Schr{o}dinger equation (NLS) for a flow around a disk in two spatial dimensions. It appears that the vortic es are nucleated when the flow becomes locally (at the edge of the disk) supersonic. A detailed study of the phase equation for the complex field $psi$ gives an Euler-Tricomi type equation for the stationary solutions below threshold. This equation is closely related to the one known in shock wave dynamics for gas. Then using solvability condition, we extract a time-dependent scenario for the evolution of the amplitude of the solution, which we, finally, relate to a known family solution of NLS which gives rise to a vortex nucleation. We also give a first order correction at the Landau velocity of nucleation, taking into account the geometry of the flow.
Previous velocity images which reveal flows of ionized gas along the most prominent cometary tail (from Knot 38) in the Helix planetary nebula are compared with that taken at optical wavelengths with the Hubble Space Telescope and with an image in th e emission from molecular hydrogen. The flows from the second most prominent tail from Knot 14 are also considered. The kinematics of the tail from the more complex Knot 32, shown here for the first time, also reveals an acceleration away from the central star. All of the tails are explained as accelerating ionized flows of ablated material driven by the previous, mildly supersonic, AGB wind from the central star. The longest tail of ionized gas, even though formed by this mechanism in a very clumpy medium, as revealed by the emission from molecular hydrogen, appears to be a coherent outflowing feature.
An investigation of optimal feedback controllers performance and robustness is carried out for vortex shedding behind a 2D cylinder at low Reynolds numbers. To facilitate controller design, we present an efficient modelling approach in which we utili se the resolvent operator to recast the linearised Navier-Stokes equations into an input-output form from which frequency responses can be computed. The difficulty of applying modern control design techniques to complex, high-dimensional flow systems is thus overcome by using low-order models identified from these frequency responses. The low-order models are used to design optimal control laws using $mathcal{H}_{infty}$ loop shaping. Two distinct control arrangements are considered, both of which employ a single-input and a single-output. In the first control arrangement, a velocity sensor located in the wake drives a pair of body forces near the cylinder. Complete suppression of shedding is observed up to a Reynolds number of $Re=110$. Due to the convective nature of vortex shedding and the corresponding time delays, we observe a fundamental trade-off: the sensor should be close enough to the cylinder to avoid any excessive time lag, but it should be kept sufficiently far from the cylinder to measure any unstable modes developing downstream. It is found that these two conflicting requirements become more difficult to satisfy for larger Reynolds numbers. In the second control arrangement, we consider a practical setup with a body-mounted force sensor and an actuator that oscillates the cylinder according to the lift measurement. It is shown that the system is stabilised only up to $Re=100$, and we demonstrate why the performance of the resulting feedback controllers deteriorates much more rapidly with increasing Reynolds number. The challenges of designing robust controllers for each control setup are also analysed and discussed.
Unsteady laminar vortex shedding over a circular cylinder is predicted using a deep learning technique, a generative adversarial network (GAN), with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equa tions. Numerical simulations at two different Reynolds numbers with different time-step sizes are conducted to produce training datasets of flow field variables. Unsteady flow fields in the future at a Reynolds number which is not in the training datasets are predicted using a GAN. Predicted flow fields are found to qualitatively and quantitatively agree well with flow fields calculated by numerical simulations. The present study suggests that a deep learning technique can be utilized for prediction of laminar wake flow in lieu of solving the Navier-Stokes equations.
Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basi c principles are well established, most details remain elusive, especially regarding the mechanisms by which dust is detached from the surface and subsequently accelerated by the gas flows surrounding the nucleus. During its 2 years rendez-vous with comet 67P/Churyumov-Gerasimenko, ESAs Rosetta has observed cometary activity with unprecedented details, in both the inbound and outbound legs of the comets orbit. This trove of data provides a solid ground on which new models of activity can be built. In this chapter, we review how activity manifests at close distance from the surface, establish a nomenclature for the different types of observed features, discuss how activity is at the same time transforming and being shaped by the topography, and finally address several potential mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا