ﻻ يوجد ملخص باللغة العربية
The layered ternary compound TaIrTe4 is an important candidate to host the recently predicted type-II Weyl Fermions. However, a direct and definitive proof of the absence of inversion symmetry in this material, a prerequisite for the existence of Weyl Fermions, has so far remained evasive. Herein, an unambiguous identification of the broken inversion symmetry in TaIrTe4 is established using angle-resolved polarized Raman spectroscopy. Combining with high-resolution transmission electron microscopy, we demonstrate an efficient and nondestructive recipe to determine the exact crystallographic orientation of TaIrTe4 crystals. Such technique could be extended to the fast identification and characterization of other type-II Weyl Fermions candidates. A surprisingly strong in-plane electrical anisotropy in TaIrTe4 thin flakes is also revealed, up to 200% at 10K, which is the strongest known electrical anisotropy for materials with comparable carrier density, notably in such good metals as copper and silver.
Transition metal dichalcogenide MoTe$_2$ is an important candidate for realizing the newly predicted type-IIWeyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inver
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically nontrivial and host exotic Majorana modes. The layered material TaIrTe4
Here we report the observation of superconductivity in pressurized type-II Weyl semimetal (WSM) candidate TaIrTe4 by means of complementary high-pressure transport and synchrotron X-ray diffraction measurements. We find that TaIrTe4 shows superconduc
The Weyl semimetal MoTe$_2$ offers a rare opportunity to study the interplay between Weyl physics and superconductivity. Recent studies have found that Se substitution can boost the superconductivity up to 1.5K, but suppress the Td structure phase th
We have investigated the magnetoresistance (MR) and Hall resistivity properties of the single crystals of tantalum sulfide, Ta3S2, which was recently predicted to be a new type II Weyl semimetal. Large MR (up to ~8000% at 2 K and 16 T), field-induced