ﻻ يوجد ملخص باللغة العربية
A new estimation of the total number and energy of the non-thermal electrons produced in the giant ($>text{X}17$) solar flare on 2003 October 28 is presented based on the analysis of the observations of the hard X-ray (HXR) emission by the High Energy Neutron Detector (HEND) onboard the Mars Odyssey spacecraft orbiting Mars. Previous estimations of the non-thermal electron energy based on the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) data were incomplete since RHESSI missed the peak of the flare impulsive phase. In contrast, HEND observed the whole flare. We used two models to estimate the energy of the non-thermal electrons: the cold thick target model and the warm thick target model. We found that, depending on the model used and the low-energy cutoff ($E_mathrm{c}$) of the non-thermal electrons, the estimate of their total energy in the entire flare can vary from $2.3 times 10^{32}$ to $6.2 times 10^{33}$ ergs. The lowest estimate, $2.3 times 10^{32}$ ergs, obtained within the cold thick target model and fixed $E_mathrm{c}=43$ keV, is consistent with the previous estimate. In this case, non-thermal electrons accelerated in the peak of the flare impulsive phase missed by RHESSI contained approximately $40%$ of the total energy of non-thermal electrons of the entire flare. The highest value, $6.2 times 10^{33}$ ergs, obtained with the cold thick target model and fixed $E_mathrm{c}=10$ keV, looks abnormally high, since it exceeds the total non-potential magnetic energy of the parent active region and the total bolometric energy radiated in the flare. Our estimates also show that the total number and energetics of the HXR-producing electrons in the flare region is a few orders of magnitude higher than of the population of energetic electrons injected into interplanetary space.
An X17.2 solar flare occurred on 2003 October 28, accompanied by multi-wavelength emissions and a high flux of relativistic particles observed at 1AU. We present the analytic results of the TRACE, SOHO, RHESSI, ACE, GOES, hard X-ray (INTEGRAL satelli
The study of nonstationary processes in the Sun is of great interest, and lately, multiwavelength observations and registration of magnetic fields are carried out by means of both ground-based telescopes and several specialized spacecraft (SC) on nea
Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flar
The solar group at the National Astronomical Observatory of Japan is conducting synoptic solar observations with the Solar Flare Telescope. While it is a part of a long-term solar monitoring, contributing to the study of solar dynamo governing solar
Observations of radio noise storms can act as sensitive probes of nonthermal electrons produced in small acceleration events in the solar corona. We use data from noise storm episodes observed jointly by the Giant Metrewave Radio Telescope (GMRT) and