ﻻ يوجد ملخص باللغة العربية
This paper aims at providing a global perspective on electromagnetic nonreciprocity and clarifying confusions that arose in the recent developments of the field. It provides a general definition of nonreciprocity and classifies nonreciprocal systems according to their linear time-invariant (LTI), linear time-variant (LTV) or nonlinear nonreciprocal natures. The theory of nonlinear systems is established on the foundation of the concepts of time reversal, time-reversal symmetry, time-reversal symmetry breaking and related Onsager- Casimir relations. Special attention is given to LTI systems, as the most common nonreciprocal systems, for which a generalized form of the Lorentz reciprocity theorem is derived. The delicate issue of loss in nonreciprocal systems is demystified and the so-called thermodynamics paradox is resolved from energy conservation considerations. The fundamental characteristics and applications of LTI, LTV and nonlinear nonreciprocal systems are overviewed with the help of pedagogical examples. Finally, asymmetric structures with fallacious nonreciprocal appearances are debunked.
This paper is the second part of a two-part paper on emph{Electromagnetic (EM) Nonreciprocity (NR)}. Part~I has defined NR, pointed out that linear NR is a stronger form of NR than nonlinear (NL) NR, explained EM Time-Reversal (TR) Symmetry (TRS) Bre
Electromagnetically-induced-transparency (EIT) and Autler-Townes splitting (ATS) are two prominent examples of coherent interactions between optical fields and multilevel atoms. They have been observed in various physical systems involving atoms, mol
Breaking Lorentz reciprocity was believed to be a prerequisite for nonreciprocal transmissions of light fields, so the possibility of nonreciprocity by linear optical systems was mostly ignored. We put forward a structure of three mutually coupled mi
General acceptance of a mathematical proposition $P$ as a theorem requires convincing evidence that a proof of $P$ exists. But what constitutes convincing evidence? I will argue that, given the types of evidence that are currently accepted as convinc
We study the problem of computing Stackelberg equilibria Stackelberg games whose underlying structure is in congestion games, focusing on the case where each player can choose a single resource (a.k.a. singleton congestion games) and one of them acts