ﻻ يوجد ملخص باللغة العربية
Epitaxial thin films have been utilised to investigate the radiolytic dissolution of uranium dioxide interfaces. Thin films of UO$_2$ deposited on single crystal yttria stabilised zirconia substrates have been exposed to water in the presence of a high flux, monochromatic, synchrotron x-ray source. In particular, this technique was applied to induce dissolution of three UO$_2$ thin films, grown along the principle UO$_2$ crystallographic orientations: (001), (110) and (111). Dissolution of each film was induced for 9 accumulative corrosion periods, totalling 270s, after which XRR spectra were recorded to observe the change in morphology of the films as a function of exposure time. While the (001) and (110) oriented films were found to corrode almost linearly and at comparable rates, the (111) film was found to be significantly more corrosion resistant, with no loss of UO$_2$ material being observed after the initial 90s corrosion period. These results distinctly show the effect of crystallographic orientation on the rate of x-ray induced UO$_2$ dissolution. This result may have important consequences for theoretical dissolution models, as it is evident that orientation dependence must be taken into consideration to obtain accurate predictions of the dissolution behaviour of UO$_2$.
We report experiments to determine the effect of radiation damage on the phonon spectra of the most common nuclear fuel, UO$_2$. We have irradiated thin ($sim$ 300 nm) epitaxial films of UO$_2$ with 2.1 MeV He$^{2+}$ ions to 0.15 dpa and a lattice sw
AB$_2$O$_4$ normal spinels with a magnetic B site can host a variety of magnetic and orbital frustrations leading to spin-liquid phases and field-induced phase transitions. Here we report the first epitaxial growth of (111)-oriented MgCr$_2$O$_4$ thi
A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca$_2$MnO$_4$ Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr$_2$TiO$_
Ferrimagnetic TbFe or TbFeCo amorphous alloy thin films have been grown by co-evaporation in ultra-high vacuum. They exhibit an out-of-plane magnetic anisotropy up to their Curie temperature with a nucleation and propagation reversal mechanism suitab
Yttrium Iron Garnet (YIG) and bismuth (Bi) substituted YIG (Bi0.1Y2.9Fe5O12, BYG) films are grown in-situ on single crystalline Gadolinium Gallium Garnet (GGG) substrates [with (100) and (111) orientations] using pulsed laser deposition (PLD) techniq