ﻻ يوجد ملخص باللغة العربية
Superiorization reduces, not necessarily minimizes, the value of a target function while seeking constraints-compatibility. This is done by taking a solely feasibility-seeking algorithm, analyzing its perturbations resilience, and proactively perturbing its iterates accordingly to steer them toward a feasible point with reduced value of the target function. When the perturbation steps are computationally efficient, this enables generation of a superior result with essentially the same computational cost as that of the original feasibility-seeking algorithm. In this work, we refine previous formulations of the superiorization method to create a more general framework, enabling target function reduction steps that do not require partial derivatives of the target function. In perturbations that use partial derivatives the step-sizes in the perturbation phase of the superiorization method are chosen independently from the choice of the nonascent directions. This is no longer true when component-wise perturbations are employed. In that case, the step-sizes must be linked to the choice of the nonascent direction in every step. Besides presenting and validating these notions, we give a computational demonstration of superiorization with component-wise perturbations for a problem of computerized tomography image reconstruction.
The superiorization methodology is intended to work with input data of constrained minimization problems, that is, a target function and a set of constraints. However, it is based on an antipodal way of thinking to what leads to constrained minimizat
In this paper, we propose a new method based on the Sliding Algorithm from Lan(2016, 2019) for the convex composite optimization problem that includes two terms: smooth one and non-smooth one. Our method uses the stochastic noised zeroth-order oracle
We propose a new class of rigorous methods for derivative-free optimization with the aim of delivering efficient and robust numerical performance for functions of all types, from smooth to non-smooth, and under different noise regimes. To this end, w
This paper addresses a distributed optimization problem in a communication network where nodes are active sporadically. Each active node applies some learning method to control its action to maximize the global utility function, which is defined as t
This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval $h