ﻻ يوجد ملخص باللغة العربية
In this paper, we recast a stealth stop search in the notoriously difficult region of the stop-neutralino Simplified Model parameter space for which $m(tilde{t}) - m(tilde{chi}) simeq m_t$. The properties of the final state are nearly identical for tops and stops, while the rate for stop pair production is $mathcal{O}(10%)$ of that for $tbar{t}$. Stop searches away from this stealth region have left behind a splinter of open parameter space when $m(tilde{t}) simeq m_t$. Removing this splinter requires surgical precision: the ATLAS constraint on stop pair production reinterpreted here treats the signal as a contaminant to the measurement of the top pair production cross section using data from $sqrt{s} = 7 text{ TeV}$ and $8 text{ TeV}$ in a correlated way to control for some systematic errors. ATLAS fixed $m(tilde{t}) simeq m_t$ and $m(tilde{chi})= 1 text{ GeV}$, implying that a careful recasting of these results into the full $m(tilde{t}) - m(tilde{chi})$ plane is warranted. We find that the parameter space with $m(tilde{chi})lesssim 55 text{ GeV}$ is excluded for $m(tilde{t}) simeq m_t$ --- although this search does cover new parameter space, it is unable to fully pull the splinter. Along the way, we review a variety of interesting physical issues in detail: (i) when the two-body width is a good approximation; (ii) what the impact on the total rate from taking the narrow width is a good approximation; (iii) how the production rate is affected when the wrong widths are used; (iv) what role the spin correlations play in the limits. In addition, we provide a guide to using MadGraph for implementing the full production including finite width and spin correlation effects, and we survey a variety of pitfalls one might encounter.
The discovery of the stop - the Supersymmetric partner of the top quark - is a key goal of the physics program enabled by the Large Hadron Collider. Although much of the accessible parameter space has already been probed, all current searches assume
The top squarks (stops) may be the most wanted particles after the Higgs boson discovery. The searches for the lightest stop have put strong constraints on its mass. However, there is still a search gap in the low mass region if the spectrum of the s
Recently ATLAS reported a $3.3sigma$ excess in the stop search with $ell+jets+E_T^{miss}$ channel. We try to interpret the signal by a light stop pair production in the MSSM. We find: (1) simple models where stop decays into a higgsino or a bino are
We consider the $X(3872)$ resonance as a $J^{PC}=1^{++}$ $Dbar D^*$ hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers $2^{++}$, $X_{2}$, which would be a $D^*bar D^*$ loosely bound state. The $
Stealth bosons are relatively light boosted particles with a cascade decay $S to A_1 A_2 to q bar q q bar q$, reconstructed as a single fat jet. In this work, we establish minimal extensions of the Standard Model that allow for such processes. Namely