ﻻ يوجد ملخص باللغة العربية
We present a simple, top-down approach for the calculation of minimum energy consumption of electrosorptive ion separation using variational form of the (Gibbs) free energy. We focus and expand on the case of electrostatic capacitive deionization (CDI), and the theoretical framework is independent of details of the double-layer charge distribution and is applicable to any thermodynamically consistent model, such as the Gouy-Chapman-Stern (GCS) and modified Donnan (mD) models. We demonstrate that, under certain assumptions, the minimum required electric work energy is indeed equivalent to the free energy of separation. Using the theory, we define the thermodynamic efficiency of CDI. We explore the thermodynamic efficiency of current experimental CDI systems and show that these are currently very low, less than 1% for most existing systems. We applied this knowledge and constructed and operated a CDI cell to show that judicious selection of the materials, geometry, and process parameters can be used to achieve a 9% thermodynamic efficiency (4.6 kT energy per removed ion). This relatively high value is, to our knowledge, by far the highest thermodynamic efficiency ever demonstrated for CDI. We hypothesize that efficiency can be further improved by further reduction of CDI cell series resistances and optimization of operational parameters.
We present an efficient implementation of periodic Gaussian density fitting (GDF) using the Coulomb metric. The three-center integrals are divided into two parts by range-separating the Coulomb kernel, with the short-range part evaluated in real spac
Activity coefficients, which are a measure of the non-ideality of liquid mixtures, are a key property in chemical engineering with relevance to modeling chemical and phase equilibria as well as transport processes. Although experimental data on thous
We reply to remarks by Lang and Horanyi on the meaning of the notion of electrosorption valency used in I. Abou Hamad et al., Electrochim. Acta 50 (2005) 5518. It is concluded that, contrary to the assertion of Lang and Horanyi, the magnitude of the
The reversibility and cyclability of anionic redox in battery electrodes hold the key to its practical employments. Here, through mapping of resonant inelastic X-ray scattering (mRIXS), we have independently quantified the evolving redox states of bo
Nowadays, hydrogen activation by frustrated Lewis pairs (FLPs) and their applications have been demonstrated to be one of emerge research topics in the field of catalysis. Previous studies have shown that the thermodynamics of these reaction is deter