ترغب بنشر مسار تعليمي؟ اضغط هنا

The Traveling-Wave Tube in the History of Telecommunication

93   0   0.0 ( 0 )
 نشر من قبل Damien Minenna
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The traveling-wave tube is a critical subsystem for satellite data transmission. Its role in the history of wireless communications and in the space conquest is significant, but largely ignored, even though the device remains widely used nowadays. This paper present, albeit non-exhaustively, circumstances and contexts that led to its invention, and its part in the worldwide (in particular in Europe) expansion of TV broadcasting via microwave radio-relays and satellites. We also discuss its actual contribution to space applications and its conception. The originality of this paper comes from the wide period covered (from first slow-wave structures in 1889 to present space projects) and from connection points made between this device and commercial exploitations. The appendix deals with an intuitive pedagogical description of the wave-particle interaction.



قيم البحث

اقرأ أيضاً

We investigate the interaction of electromagnetic waves and electron beams in a 4 meters long traveling wave tube (TWT). The device is specially designed to simulate beam-plasma experiments without appreciable noise. This TWT presents an upgraded slo w wave structure (SWS) that results in more precise measurements and makes new experiments possible. We introduce a theoretical model describing wave propagation through the SWS and validated by the experimental dispersion relation, impedance, phase and group velocities. We analyze nonlinear effects arising from the beam-wave interaction, such as the modulation of the electron beam and the wave growth and saturation process. When the beam current is low, the wave growth coefficient and saturation amplitude follow the linear theory predictions. However, for high values of current, nonlinear space charge effects become important and these parameters deviate from the linear predictions, tending to a constant value. After saturation, we also observe trapping of the beam electrons, which alters the wave amplitude along the TWT.
95 - Damien Minenna 2019
To simulate traveling-wave tubes (TWTs) in time domain and more generally the wave-particle interaction in vacuum devices, we developed the DIscrete MOdel with HAmiltonian approach (dimoha) as an alternative to current particle-in-cell (PIC) and freq uency approaches. Indeed, it is based on a longitudinal N-body Hamiltonian approach satisfying Maxwells equations. Advantages of dimoha comprise: (i) it allows arbitrary waveform (not just field envelope), including continuous waveform (CW), multiple carriers or digital modulations (shift keying); (ii) the algorithm is much faster than PIC codes thanks to a field discretization allowing a drastic degree-of-freedom reduction, along with a robust symplectic integrator; (iii) it supports any periodic slow-wave structure design such as helix or folded waveguides; (iv) it reproduces harmonic generation, reflection, oscillation and distortion phenomena; (v) it handles nonlinear dynamics, including intermodulations, trapping and chaos. dimoha accuracy is assessed by comparing it against measurements from a commercial Ku-band tapered helix TWT and against simulations from a sub-THz folded waveguide TWT with a staggered double-grating slow-wave structure. The algorithm is also tested for multiple-carriers simulations with success.
In this paper we describe the history of the LHCb experiment over the last three decades, and its remarkable successes and achievements. LHCb was conceived primarily as a b-physics experiment, dedicated to CP violation studies and measurements of ver y rare b decays, however the tremendous potential for c-physics was also clear. At first data taking, the versatility of the experiment as a general-purpose detector in the forward region also became evident, with measurements achievable such as electroweak physics, jets and new particle searches in open states. These were facilitated by the excellent capability of the detector to identify muons and to reconstruct decay vertices close to the primary pp interaction region. By the end of the LHC Run 2 in 2018, before the accelerator paused for its second long shut down, LHCb had measured the CKM quark mixing matrix elements and CP violation parameters to world-leading precision in the heavy-quark systems. The experiment had also measured many rare decays of b and c quark mesons and baryons to below their Standard Model expectations, some down to branching ratios of order 10-9. In addition, world knowledge of b and c spectroscopy had improved significantly through discoveries of many new resonances already anticipated in the quark model, and also adding new exotic four and five quark states.
115 - Jean Bricmont 2017
The goal of this paper is to explain how the views of Albert Einstein, John Bell and others, about nonlocality and the conceptual issues raised by quantum mechanics, have been rather systematically misunderstood by the majority of physicists.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا