ﻻ يوجد ملخص باللغة العربية
Electrical transport in three dimensional topological insulators(TIs) occurs through spin-momentum locked topological surface states that enclose an insulating bulk. In the presence of a magnetic field, surface states get quantized into Landau levels giving rise to chiral edge states that are naturally spin-polarized due to spin momentum locking. It has been proposed that p-n junctions of TIs in the quantum Hall regime can manifest unique spin dependent effects, apart from forming basic building blocks for highly functional spintronic devices. Here, for the first time we study electrostatically defined n-p-n junctions of bulk insulating topological insulator BiSbTe$_{1.25}$Se$_{1.75}$ in the quantum Hall regime. We reveal the remarkable quantization of longitudinal resistance into plateaus at 3/2 and 2/3 h/e$^2$, apart from several partially developed fractional plateaus. Theoretical modeling combining the electrostatics of the dual gated TI n-p-n junction with Landauer Buttiker formalism for transport through a network of chiral edge states explains our experimental data, while revealing remarkable differences from p-n junctions of graphene and two-dimensional electron gas systems. Our work not only opens up a route towards exotic spintronic devices but also provides a test bed for investigating the unique signatures of quantum Hall effects in topological insulators.
A p-n junction, an interface between two regions of a material populated with carriers of opposite charge, is a basic building block of solid state electronic devices. From the fundamental physics perspective, it often serves as a tool to reveal the
The 3D topological insulator (TI) PN junction under magnetic fields presents a novel transport property which is investigated both theoretically and numerically in this paper. Transport in this device can be tuned by the axial magnetic field. Specifi
We investigate the electron transport through a graphene p-n junction under a perpendicular magnetic field. By using Landauar-Buttiker formalism combining with the non-equilibrium Green function method, the conductance is studied for the clean and di
Electron-electron interactions in topological p-n junctions consisting of vertically stacked topological insulators are investigated. n-type Bi2Te3 and p-type Sb2Te3 of varying relative thicknesses are deposited using molecular beam epitaxy and their
Spatial separation of electrons and holes in graphene gives rise to existence of plasmon waves confined to the boundary region. Theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths sma