ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized transport in topological insulator n-p-n junctions

100   0   0.0 ( 0 )
 نشر من قبل Abhishek Banerjee
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical transport in three dimensional topological insulators(TIs) occurs through spin-momentum locked topological surface states that enclose an insulating bulk. In the presence of a magnetic field, surface states get quantized into Landau levels giving rise to chiral edge states that are naturally spin-polarized due to spin momentum locking. It has been proposed that p-n junctions of TIs in the quantum Hall regime can manifest unique spin dependent effects, apart from forming basic building blocks for highly functional spintronic devices. Here, for the first time we study electrostatically defined n-p-n junctions of bulk insulating topological insulator BiSbTe$_{1.25}$Se$_{1.75}$ in the quantum Hall regime. We reveal the remarkable quantization of longitudinal resistance into plateaus at 3/2 and 2/3 h/e$^2$, apart from several partially developed fractional plateaus. Theoretical modeling combining the electrostatics of the dual gated TI n-p-n junction with Landauer Buttiker formalism for transport through a network of chiral edge states explains our experimental data, while revealing remarkable differences from p-n junctions of graphene and two-dimensional electron gas systems. Our work not only opens up a route towards exotic spintronic devices but also provides a test bed for investigating the unique signatures of quantum Hall effects in topological insulators.

قيم البحث

اقرأ أيضاً

A p-n junction, an interface between two regions of a material populated with carriers of opposite charge, is a basic building block of solid state electronic devices. From the fundamental physics perspective, it often serves as a tool to reveal the unconventional transport behavior of novel materials. In this work, we show that a p-n junction made from a three dimensional topological insulator (3DTI) in a magnetic field realizes an electronic Mach-Zehnder interferometer with virtually perfect visibility. This is owed to the confinement of the topological Dirac fermion state to a closed two-dimensional surface, which offers the unprecedented possibility of utilizing external fields to design networks of chiral modes wrapping around the bulk in closed trajectories, without the need of complex constrictions or etching. Remarkably, this junction also acts as a spin filter, where the path of the particle is tied to the direction of spin propagation. It therefore constitutes a novel and highly tunable spintronic device where spin polarized input and output currents are naturally formed and could be accessed and manipulated seperately.
The 3D topological insulator (TI) PN junction under magnetic fields presents a novel transport property which is investigated both theoretically and numerically in this paper. Transport in this device can be tuned by the axial magnetic field. Specifi cally, the scattering coefficients between incoming and outgoing modes oscillate with axial magnetic flux at the harmonic form. In the condition of horizontal mirror symmetry, the initial phase of the harmonic oscillation is dependent on the parities of incoming and outgoing modes. This symmetry is broken when a vertical bias is applied which leads to a kinetic phase shift added to the initial phase. On the other hand, the amplitude of oscillation is suppressed by the surface disorder while it has no influence on the phase of oscillation. Furthermore, with the help of the vertical bias, a special (1,-2) 3D TI PN junction can be achieved, leading to a novel spin precession phenomenon.
We investigate the electron transport through a graphene p-n junction under a perpendicular magnetic field. By using Landauar-Buttiker formalism combining with the non-equilibrium Green function method, the conductance is studied for the clean and di sordered samples. For the clean p-n junction, the conductance is quite small. In the presence of disorders, it is strongly enhanced and exhibits plateau structure at suitable range of disorders. Our numerical results show that the lowest plateau can survive for a very broad range of disorder strength, but the existence of high plateaus depends on system parameters and sometimes can not be formed at all. When the disorder is slightly outside of this disorder range, some conductance plateaus can still emerge with its value lower than the ideal value. These results are in excellent agreement with the recent experiment.
Electron-electron interactions in topological p-n junctions consisting of vertically stacked topological insulators are investigated. n-type Bi2Te3 and p-type Sb2Te3 of varying relative thicknesses are deposited using molecular beam epitaxy and their electronic properties measured using low-temperature transport. The screening factor is observed to decrease with increasing sample thickness, a finding which is corroborated by semi-classical Boltzmann theory. The number of two-dimensional states determined from electron-electron interactions is larger compared to the number obtained from weak-antilocalization, in line with earlier experiments using single layers.
Spatial separation of electrons and holes in graphene gives rise to existence of plasmon waves confined to the boundary region. Theory of such guided plasmon modes within hydrodynamics of electron-hole liquid is developed. For plasmon wavelengths sma ller than the size of charged domains plasmon dispersion is found to be omega ~ q^(1/4). Frequency, velocity and direction of propagation of guided plasmon modes can be easily controlled by external electric field. In the presence of magnetic field spectrum of additional gapless magnetoplasmon excitations is obtained. Our findings indicate that graphene is a promising material for nanoplasmonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا