ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Threshold Energy on Reconstructions of Properties of Low-Mass WIMPs in Direct Dark Matter Detection Experiments

401   0   0.0 ( 0 )
 نشر من قبل Chung-Lin Shan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we revisit our model-independent methods developed for reconstructing properties of Weakly Interacting Massive Particles (WIMPs) by using measured recoil energies from direct Dark Matter detection experiments directly and take into account more realistically non-negligible threshold energy. All expressions for reconstructing the mass and the (ratios between the) spin-independent and the spin-dependent WIMP-nucleon couplings have been modified. We focus on low-mass (m_chi <~ 15 GeV) WIMPs and present the numerical results obtained by Monte Carlo simulations. Constraints caused by non-negligible threshold energy and technical treatments for improving reconstruction results will also be discussed.

قيم البحث

اقرأ أيضاً

88 - Sen Miao , Chung-Lin Shan , 2013
In this paper, we introduce model-independent data analysis procedures for identifying inelastic WIMP-nucleus scattering as well as for reconstructing the mass and the mass splitting of inelastic WIMPs simultaneously and separately. Our simulations s how that, with O(50) observed WIMP signals from one experiment, one could already distinguish the inelastic WIMP scattering scenarios from the elastic one. By combining two or more data sets with positive signals, the WIMP mass and the mass splitting could even be reconstructed with statistical uncertainties of less than a factor of two.
Dark Matter (DM) is an elusive form of matter which has been postulated to explain astronomical observations through its gravitational effects on stars and galaxies, gravitational lensing of light around these, and through its imprint on the Cosmic M icrowave Background (CMB). This indirect evidence implies that DM accounts for as much as 84.5% of all matter in our Universe, yet it has so far evaded all attempts at direct detection, leaving such confirmation and the consequent discovery of its nature as one of the biggest challenges in modern physics. Here we present a novel form of low-mass DM $chi$ that would have been missed by all experiments so far. While its large interaction strength might at first seem unlikely, neither constraints from particle physics nor cosmological/astronomical observations are sufficient to rule out this type of DM, and it motivates our proposal for direct detection by optomechanics technology which should soon be within reach, namely, through the precise position measurement of a levitated mesoscopic particle which will be perturbed by elastic collisions with $chi$ particles. We show that a recently proposed nanoparticle matter-wave interferometer, originally conceived for tests of the quantum superposition principle, is sensitive to these collisions, too.
We discuss several low-energy backgrounds to sub-GeV dark matter searches, which arise from high-energy particles of cosmic or radioactive origin that interact with detector materials. We focus on Cherenkov radiation, transition radiation, and lumine scence or phonons from electron-hole pair recombination, and show that these processes are an important source of backgrounds at both current and planned detectors. We perform detailed analyses of these backgrounds at several existing and proposed experiments. We find that a large fraction of the observed single-electron events in the SENSEI 2020 run originate from Cherenkov photons generated by high-energy events in the Skipper-CCD, and from recombination photons generated in a phosphorus-doped layer of the same instrument. In a SuperCDMS HVeV 2020 run, Cherenkov photons produced in the sensor holders likely explain the origin of most of the events containing 2 to 6 electrons. At SuperCDMS SNOLAB, Cherenkov radiation from radioactive contaminants in Cirlex could dominate the low-energy backgrounds. For EDELWEISS, Cherenkov or luminescence backgrounds are subdominant to their observed event rate, but could still limit the sensitivity of their future searches. We also point out that Cherenkov radiation, transition radiation, and recombination could be a significant source of backgrounds at future experiments aiming to detect dark-matter via scintillation or phonon signals. The implications of our results for sub-GeV dark-matter searches and for the design of future detectors are significant. In particular, several design strategies to mitigate these backgrounds can be implemented, such as minimizing non-conductive materials near the target, implementing active and passive shielding, and using multiple detectors. Finally, we speculate on the implications of our results for the development of quantum computers and neutrino detectors.
We study the capabilities of the MAJORANA DEMONSTRATOR, a neutrinoless double-beta decay experiment currently under construction at the Sanford Underground Laboratory, as a light WIMP detector. For a cross section near the current experimental bound, the MAJORANA DEMONSTRATOR should collect hundreds or even thousands of recoil events. This opens up the possibility of simultaneously determining the physical properties of the dark matter and its local velocity distribution, directly from the data. We analyze this possibility and find that allowing the dark matter velocity distribution to float considerably worsens the WIMP mass determination. This result is traced to a previously unexplored degeneracy between the WIMP mass and the velocity dispersion. We simulate spectra using both isothermal and Via Lactea II velocity distributions and comment on the possible impact of streams. We conclude that knowledge of the dark matter velocity distribution will greatly facilitate the mass and cross section determination for a light WIMP.
In a recent paper, four of the present authors proposed a class of dark matter models where generalized parity symmetry leads to equality of dark matter abundance with baryon asymmetry of the Universe and predicts dark matter mass to be around 5 GeV. In this note we explore how this model can be tested in direct search experiments. In particular, we point out that if the dark matter happens to be the mirror neutron, the direct detection cross section has the unique feature that it increases at low recoil energy unlike the case of conventional WIMPs. It is also interesting to note that the predicted spin-dependent scattering could make significant contribution to the total direct detection rate, especially for light nucleus. With this scenario, one could explain recent DAMA and CoGeNT results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا