ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term monitoring of the broad-line region properties in a selected sample of AGN

85   0   0.0 ( 0 )
 نشر من قبل Dragana Ili\\'c
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the long-term optical monitoring campaign of active galactic nuclei (AGN) coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. This campaign has produced a remarkable set of optical spectra, since we have monitored for several decades different types of broad-line (type 1) AGN, from a Seyfert 1, double-peaked line, radio loud and radio quiet AGN, to a supermassive binary black hole candidate. Our analysis of the properties of the broad line region (BLR) of these objects is based on the variability of the broad emission lines. We hereby give a comparative review of the variability properties of the broad emission lines and the BLR of seven different type 1 AGNs, emphasizing some important results, such as the variability rate, the BLR geometry, and the presence of the intrinsic Baldwin effect. We are discussing the difference and similarity in the continuum and emission line variability, focusing on what is the impact of our results to the supermassive black hole mass determination from the BLR properties.



قيم البحث

اقرأ أيضاً

Results of a long-term monitoring ($gtrsim 10$ years) of the broad line and continuum fluxes of three Active Galactic Nuclei (AGN), 3C 390.3, NGC 4151, and NGC 5548, are presented. We analyze the H$alpha$ and H$beta$ profile variations during the mon itoring period and study different details (as bumps, absorption bands) which can indicate structural changes in the Broad Line Region (BLR). The BLR dimensions are estimated using the time lags between the continuum and the broad lines flux variations. We find that in the case of 3C 390.3 and NGC 5548 a disk geometry can explain both the broad line profiles and their flux variations, while the BLR of NGC 4151 seems more complex and is probably composed of two or three kinematically different regions.
We present models of the H$beta$-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of $log_{10}(M_{rm BH}/M_odot) = 6.48^{+0.21}_{-0.18}$ for PG 1310$-$108, $7.50^{+0.25}_{-0.18}$ for Mrk 50, $7.46^{+0.15}_{-0.21}$ for Mrk 141, $7.58^{+0.08}_{-0.08}$ for Mrk 279, $7.11^{+0.20}_{-0.17}$ for Mrk 1511, $6.65^{+0.27}_{-0.15}$ for NGC 4593, and $6.94^{+0.14}_{-0.14}$ for Zw 229$-$015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor $f$ used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find $log_{10}(f_{{rm rms},sigma})_{rm pred} = 0.57 pm 0.19$. Finally, we search for correlations between $f$ and other AGN and BLR parameters and find marginal evidence that $f$ is correlated with $M_{rm BH}$ and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio.
The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) was designed to conduct a blind search for AGN-driven outflows on X-ray selected AGN at redshift z$sim$2 with high ($sim$2 kpc) spatial resolution, and correlate th em to the properties of the host galaxy and central black hole. The main aims of this paper are: a) to derive reliable estimates for the BH mass and accretion rates for the Type-1 AGN in this survey; b) to characterize the properties of the AGN driven winds in the BLR. We analyzed rest-frame optical and UV spectra of 21 Type-1 AGN. We found that the BH masses estimated from H$alpha$ and H$beta$ lines are in agreement. We estimate BH masses in the range Log(M$rm_{BH}/M_{odot}$)=8.4-10.8 and Eddington ratios $rmlambda_{Edd}$ =0.04-1.3. We confirm that the CIV line width does not correlate with the Balmer lines and the peak of the line profile is blue-shifted with respect to the [OIII]-based systemic redshift. These findings support the idea that the CIV line is tracing outflowing gas in the BLR, with velocities up to $sim$4700 km/s. We confirm the strong dependence of the BLR wind velocity with the UV-to-Xray continuum slope, L$rm_{Bol}$ and $rmlambda_{Edd}$. We inferred BLR mass outflow rates in the range 0.005-3 M$_{odot}$/yr, showing a correlation with the bolometric luminosity consistent with that observed for ionized winds in the NLR and X-ray winds detected in local AGN, and kinetic power $sim$10$^{[-7:-4]}times$ L$rm_{Bol}$. Finally, we found an anti-correlation between the equivalent width of the [OIII] line with respect to the CIV shift, and a positive correlation with [OIII] outflow velocity. These findings, for the first time in an unbiased sample of AGN at z$sim$2, support a scenario where BLR winds are connected to galaxy scale detected outflows, and are capable of affecting the gas in the NLR located at kpc scale.
94 - Jenny E. Greene 2010
It is now possible to estimate black hole masses across cosmic time, using broad emission lines in active galaxies. This technique informs our views of how galaxies and their central black holes coevolve. Unfortunately, there are many outstanding unc ertainties associated with these virial mass estimates. One of these comes from using the accretion luminosity to infer a size for the broad-line region. Incorporating the new sample of low-luminosity active galaxies from our recent monitoring campaign at Lick Observatory, we recalibrate the radius-luminosity relation with tracers of the accretion luminosity other than the optical continuum. We find that the radius of the broad-line region scales as the square root of the X-ray and Hbeta luminosities, in agreement with recent optical studies. On the other hand, the scaling appears to be marginally steeper with narrow-line luminosities. This is consistent with a previously observed decrease in the ratio of narrow-line to X-ray luminosity with increasing total luminosity. The radius of the broad-line region correlates most tightly with Hbeta luminosity, while the X-ray and narrow-line relations both have comparable scatter of a factor of two. These correlations provide useful alternative virial BH masses in objects with no detectable optical/UV continuum emission, such as high-redshift galaxies with broad emission lines, radio-loud objects, or local active galaxies with galaxy-dominated continua.
We investigate a long-term (26 years, from 1987 to 2013) variability in the broad spectral line properties of the radio galaxy Arp 102B, an active galaxy with broad double-peaked emission lines. We use observations presented in Paper I (Shapovalova e t al. 2013) in the period from 1987 to 2011, and a new set of observations performed in 2012--2013. To explore the BLR geometry, and clarify some contradictions about the nature of the BLR in Arp 102B we explore variations in the H$alpha$ and H$beta$ line parameters during the monitored period. We fit the broad lines with three broad Gaussian functions finding the positions and intensities of the blue and red peaks in H$alpha$ and H$beta$. Additionally we fit averaged line profiles with the disc model. We find that the broad line profiles are double-peaked and have not been changed significantly in shapes, beside an additional small peak that, from time to time can be seen in the blue part of the H$alpha$ line. The positions of the blue and red peaks { have not changed significantly during the monitored period. The H$beta$ line is broader than H$alpha$ line in the monitored period. The disc model is able to reproduce the H$beta$ and H$alpha$ broad line profiles, however, observed variability in the line parameters are not in a good agreement with the emission disc hypothesis. It seems that the BLR of Arp 102B has a disc-like geometry, but the role of an outflow can also play an important role in observed variation of the broad line properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا