ﻻ يوجد ملخص باللغة العربية
The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization is found. Its nonexponential form and the variation of localization length with boundary velocity are well described by a continuum model in the spirit of Janiaud et al. [Phys. Rev. Lett. 97, 038302 (2006)]. Other results satisfactorily link localization to model parameters, and hence tie together continuum and local descriptions.
In a recent series of papers [1--3], a statistical model that accounts for correlations between topological and geometrical properties of a two-dimensional shuffled foam has been proposed and compared with experimental and numerical data. Here, the v
The methods of statistical mechanics are applied to two-dimensional foams under macroscopic agitation. A new variable -- the total cell curvature -- is introduced, which plays the role of energy in conventional statistical thermodynamics. The probabi
Key features of the mechanical response of amorphous particulate materials, such as foams, emulsions, and granular media, to applied stress are determined by the frequency and size of particle rearrangements that occur as the system transitions from
Elasticity of soft materials can be greatly influenced by the presence of air bubbles. Such a capillary effect is expected for a wide range of materials, from polymer gels to concentrated emulsions and colloidal suspensions. Whereas experimental resu
We perform numerical simulations of purely repulsive soft colloidal particles interacting via a generalized elastic potential and constrained to a two-dimensional plane and to the surface of a spherical shell. For the planar case, we compute the phas